Your Guide to Colored Concrete

When you think of concrete, you probably visualize a boring, grey slab.

Not many people associate concrete with color, but with the help of aesthetic treatments, it can really become a true work of art.

Before you start your next colored concrete project, it’s important to understand the advantages and ingredients involved.

Key benefits

1. Enhancing the appearance of your yard

The first and most obvious benefit of colored concrete is its aesthetic appeal. Whether you’re incorporating it into your new driveway or backyard patio, you’d be surprised at the difference a simple pop of color can make to your yard. 

But beauty isn’t its only benefit. 

2. Extra protection

The aesthetic treatments used to give colored concrete its pigment also provide a practical, wear-resistant coating and a beautiful finish. This will help your gorgeous slab maintain its fresh look over time, protecting it from weather and the damage of day-to-day use.

Understanding the two techniques

When it comes to concrete coloring, there are two main techniques: 

1. Stirring the colorant into the concrete mix itself 

This mixing technique is most commonly used in projects that desire one solid color. It works by mixing in a powdered pigment made up of inorganic minerals into the ready mix. This pigment is oftentimes made of chromium oxides and iron. 

2. Stamping the concrete

Concrete stamping, on the other hand, is used for projects that require special patterns or designs. This method involves layering colorant on top of fresh concrete then stamping it with texturing molds. This colorant is either made up of synthetic or natural pigments.

Synthetic pigments

Synthetic pigments are made up of metallic oxides and are created through industrial processes. During these processes, minerals (the raw material) are refined to change their physio-chemical properties.

These physio-chemical properties are what link each metallic oxide to their specific color. Cobalt oxide, for example, is a metallic oxide used to create blue concrete.

Natural pigments

Natural pigments are derived from mineral deposits, and like synthetic pigments, they’re made up of metallic oxides and hydroxides. Iron is most commonly used to apply this pigmentation.

Get prettier, longer-lasting concrete by coloring it. At Port Aggregates, our professional concrete contractors are highly skilled in creating beautiful, precise pours every time. Contact us today to request a quote for your next project!

The post Your Guide to Colored Concrete appeared first on Port Aggregates.

Your Guide to Exposed Aggregate Concrete

Your Guide to Exposed Aggregate Concrete

Concrete is much more than just a place to park your car or a foundation for your home.

When starting your next project, it’s important to be aware of your options. This material can really be quite beautiful if you know what to ask for.

The possibilities are endless, but today, let’s take a closer look at exposed aggregate concrete.

What is exposed aggregate concrete?

Over 100 years old, the exposed aggregate technique quite literally “paved” the way for decorative concrete. 

The name pretty much says it all. In this type of concrete, a thin top layer is intentionally removed to expose the aggregate underneath. The exposed layer can include sandgravel, quartzite, or crushed glass.

Gravel is most commonly used, and a variety of different sizes are available to give you the desired texture that you want. See example below.

exposed aggregate concrete

Benefits of exposed aggregate

Exposed aggregate concrete offers infinite benefits. The most glaring advantage is its gorgeous appearance and satisfying texture. It adds a natural element to any area, and the three-dimensional surface is completely customizable. 

Another advantage to this type of decorative concrete is its increased traction. Rough surfaces like these are ideal for helping you keep your footing–even when the surface is wet or icy. It can even be customized to stick out at certain levels, if you so desire.

One of the main reasons why exposed aggregate is so popular is its price. It’s one of the least expensive types of decorative concrete available, and is an affordable alternative to standard, drab concrete.

Maintenance tips

Like any other type of concrete, exposed aggregate offers immense durability and is very low-maintenance. 

Proper care includes regular sweeping or rinsing off with a hose. It should also be resealed every couple of years. Fortunately, the color of the aggregates will not fade over time, and it’s actually the easiest type of decorative concrete to keep up with.

Repairs (if necessary) are quite simple, and exposed aggregate can last for decades if properly cared for and installed by professionals. At Port Aggregates, our expert concrete contractors have decades’ worth of experience built every pour. Contact us today to request a quote

The post Your Guide to Exposed Aggregate Concrete appeared first on Port Aggregates.

Did you miss our previous article…
https://www.concreteideas.co/?p=1258

What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction?

What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction?

No matter your experience with waterproofing membrane failure, waterproofing breaches are not so easy to spot. In fact, according to one article in The Construction Specifier, the most minor-looking of leaks could be a sign. Depending on where and how the waterproofing was installed, that can lead to costly excavation work for basements, vaults, tunnels, and water features. It can also lead to full removal or replacement of fixtures and finishes in certain spaces, such as commercial kitchens and lobbies.

Still, that’s why envelope engineers or other professionals conduct site visits before construction is completed, right? They make sure the external waterproofing membrane is placed properly and effectively to mitigate the risk and damage of a breach as much as possible.

That can certainly lead to a relatively long-lasting waterproof structure. But it’s neither the most risk-free nor the most sustainable solution. But what does that mean for your architectural work? What does the risk and reality of external waterproofing membrane failure mean for you?

It’s Not Always Better to Stick with Technology You’re Comfortable With

Many architects like yourself are very familiar with external membranes. You know how to inspect and install them. You can physically see and touch them to sort them out before they’re covered. In short, there’s a sort of reassurance that comes with external membranes. You know they are actually there, and you know exactly what to do if any issues come up.

That comfort can be a detriment at times, however.

No Matter Your Comfort with Them, Membranes Are Still High-Risk

Sure, you can see the external membrane and know the ins and outs of it. But that doesn’t mitigate the risk of the membrane failing. If anything, too much confidence in it can stop you from trying out a less liable waterproofing system.

And even if you are able to physically check a membrane that’s been applied to the positive side of a structure and felt comfortable with that inspection, that doesn’t mean the membrane will stay that way. For instance, the backfilling process can easily tear the membrane. That can fail the whole waterproofing system right there as there is often no opportunity to excavate the membrane to repair it. As a result, builders often turn to epoxy injections to attempt to fix cracks and leaks that show up in accessible areas of a concrete’s surface. That still leaves water outside of those areas to continue passing through the concrete, threatening its structural integrity.

Too Much Confidence in Membranes Can Lead to Poor Concrete Construction

While we have talked about the risk that comes with membranes so far, that doesn’t mean they don’t have a place in construction. They certainly can be used effectively. But when they’re relied on to function perfectly by themselves and project stakeholders haven’t weighed the risks of their application realistically, it can negatively impact the quality of concrete construction.

Take the crack-bridging ability that some membranes have, for instance. Often, stakeholders in a project have full trust in this ability to cover cracks in concrete and prevent water from reaching those cracks. They make the assumption that this ability won’t fail. As a result, they feel less worried about having to face the consequences if concrete does crack. That leads them to care less about how concrete placement, curing, and control joints are handled.

Compounding this fact, stakeholders also highly regard the diversity of membranes available on the market. There are enough choices available that membranes seemingly come with an infinite number of different accessories to mitigate risks. But even with those accessories, membrane failure is still a possibility. Once that happens, those accessories aren’t going to stop a construction team from a long, costly repair process.

A membrane’s accessories might make that last situation seem highly unlikely. But unfortunately, that’s just not the case.

Patches of a waterproofing membrane have come away from the structure they were protecting.

In Fact, External Waterproofing Membrane Failure Is Incredibly Common

As the Australian Institute of Waterproofing member Wet-seal notes, waterproofing makes up 80% of complaints during construction. It’s an impressive statistic considering waterproofing does not take up a huge chunk of the cost to construct a structure. Waterproofing typically only takes up 1% to 2% of that cost. So why are complaints so high?

A big reason for that is likely how easy it is for external waterproofing membranes to fail. It’s a pervasive enough issue that water intrusion is the cause for around 70% of construction lawsuits.

So, how does external waterproofing membrane failure get to be that big of a concern? Let’s look at the three most common reasons why.

One of the Main Culprits for This Is Simply Poor Preparation and Installation

At least 90% of waterproofing failures come from poor handiwork.

It’s not hard to see why either. Despite not being as costly as other parts of construction, waterproofing is no less complex. There are lots of factors to consider for it, and if one aspect isn’t considered carefully enough, a failure could be waiting around the corner.

A clock rests on top of a blueprint at a worksite next to other blueprint tools.

Poor Preparation Is Often Due to a Lack of Time

Builders need to make sure the surface of the substrate they want to apply a membrane to has the following qualities:

A smooth and clean exteriorFalls for drainageA space absent of formwork distortions, voids, and protrusions

To achieve these qualities, they need to spend time and attention on looking to see if the substrate surface has been spoiled by debris and residue and whether they need to scrape and vacuum it. Otherwise, without a pristine substrate surface, it is likely that a waterproofing application will not be successful.

An external membrane has fallen away from the concrete foundation it was applied to.

Poor Installation Is No Different

Builders have multiple items to install to ensure that a structure has an effective and thorough waterproofing system. Depending on the structure, that might mean knowing the correct installation procedure and executing it for the following products:

Waterstop anglesPerimeter flashingsVertical flashing anglesPressure strip flashingsChased drop flashingsControl jointsDrainage flangesCavity flashing downturnsReinforcing at junctionsOverflow devicesLinear strip drainsSlip joints

Not having the time to properly install even just one of these items can weaken the overall waterproofing system they’re a part of, making it more vulnerable to leaks.

In short, standing in the way of both proper waterproofing preparation and installation is time. Construction projects tend to run on tight schedules, so it can be tempting to skimp on the smaller details. Whether that’s quickly getting through backfilling and tearing a membrane unintentionally in the process or limiting quality assurance processes for faster work, it’s all done to help save what little time a project has. And while it might speed up a project in the short-term, the following repairs that result from this work will add up in the long-term to the project’s expenses.

The Second Culprit Is a Failure to Prime Areas Effectively

Waterproofing membranes, even self-adhering ones, require a primer during their application process. After all, builders want to ensure that their membranes remain bonded to a substrate for the life of the structure they’re waterproofing. And using a primer to prepare the surface of a substrate helps to enhance the adhesiveness of a membrane. It does so by reducing the porosity, dusting, air entrapment, and high-residual moisture of a substrate.

But it will only impart those qualities if builders prime the substrate surface effectively.

This is also an area that runs into issues with timing. When constructing homes, for example, a builder may not always accurately estimate how long it will take to prime the surface. As a result, they might schedule in tiling to be done in a bathroom and expect that the priming will only take a day or so. However, priming could take longer depending on the membrane, temperature, and weather conditions.

If the schedule is too tight, that could lead to a substrate surface with no priming, insufficient priming, or the wrong primer entirely. All of which can cause the membrane to debond. That creates gaps in the membrane system, leaving room for moisture to penetrate the substrate and weaken its structural integrity.

The Last Is a Lack of Insight into the Substrate’s Residual Moisture

Unsurprisingly, out of the top three common causes of external waterproofing membrane failure, moisture remains one of the bigger obstacles. All it takes is poor preparation, installation, or priming for moisture to enter the structure and wreak havoc.

But what if moisture was already surrounding the structure but had gone unnoticed? As you might have guessed by now, that’s a pretty common situation. And it likely stems from a lack of awareness at how much moisture content a substrate has.

Without an accurate estimate of moisture content using a tool like a moisture meter, there is a high chance that the substrate still has residual moisture. When left alone, that moisture can interfere with a membrane’s ability to bond to a substrate, causing structural weakness to occur.

A construction worker is waterproofing a flat roof with a bitumen-sealing membrane.

That Puts Membranes in an Awkward Spot When It Comes to Sustainability

Because it is so easy to damage membranes through application alone and because that damage can have severe consequences for a structure, membranes should not be considered the ideal sustainable solution. After all, you can’t call something sustainable if it can’t be upheld safely in an environment for a long time.

Though, it is true that not all membranes are going to fail immediately during application or afterwards. What about those then? Would we call the ones that can last without wear and don’t hurt their environment sustainable?  It’s debatable, but in this instance, the answer would still likely be no. And that’s because many membranes come with a short life span of around one to 10 years before they deteriorate.

After that, they need to be replaced. If they aren’t, then water damage is a more likely possibility. And if they are, then the building’s maintenance team needs to use up monetary and construction resources to get the same waterproofing protection.

All in all, it’s a very short-term version of sustainability that is draining resources at regular periods unnecessarily as there are long-term forms of waterproofing out there.

A tanker truck is driving through a foggy road.

Even Worse, Acquiring External Membranes Is Also Not That Sustainable

Even if you still want to stick with specifying and using external membranes, you may find it increasingly difficult to do so.

For One, There Is a Global Materials Shortage That May Hinder That

Between the ongoing pandemic, the past Suez Canal blockage, delayed and pricier shipping, and the mass blackouts in Texas that led to chemical plant shutdowns, there is a significant materials shortage going on.

And waterproofing membranes have not gone unscathed. Often made with plastics and other materials that typically require crude oil, membranes have been hit in both areas. Plastics are hard enough to get that companies like Acer and Dell are starting to create products with recycled plastic instead. Meanwhile, crude oil is in a different sticky situation. Instead of a shortage of the product itself, there’s a shortage of tanker truck drivers in the United States of America. At least 50,000 more drivers are needed. With the two materials harder to supply, that is going to make waterproofing membranes also harder to supply and will likely increase their costs as demand goes up for that shorter supply.

The general perception is that this might get better sometime in 2022 or a little later. But does that mean you should wait it out?

Even Without a Shortage, Membranes Will Still Be Non-Eco-Friendly

While only some membranes use plastic, almost all require crude oil in their manufacturing. And that doesn’t bode well for the environment. According to the University of Calgary’s energy education team, whether drilling for oil, transporting it, refining it, or using it otherwise, there is always an environmental impact. Extracting it, for example, destroys the land around it. And other oil industry activities can end up producing chemicals that contribute to smog or creating greenhouse gases that increase the effects of global warming. Moreover, if during any part of that process, the oil spills, it can impact the plants, soil, and well-being of animals, making the environment wholly toxic.

All of which is definitely not a way to maintain human well-being either, making membranes even less ideal for sustainability.

A construction worker is throwing a pulpable bag of KIM into ready-mix concrete.

Nowadays, There Are Better Alternatives Out There

And they come in the form of crystalline waterproofing admixtures.

To apply these products, builders have one step and that’s it. There’s no detailed handiwork or long time period required. All builders have to do is add your specified admixture into the concrete mix. From there, the mix will have the waterproofing properties it needs. It’s a short and sweet process that should permanently waterproof a concrete structure without the risk of application error.

The only real challenge you’ll come across is finding which crystalline admixture is right for you.

Just Look Up Your Options for Concrete Waterproofing Admixtures

The American Concrete Institute has classified these products under two categories: permeability-reducing admixtures for non-hydrostatic conditions (PRAN) and permeability-reducing admixtures for hydrostatic conditions (PRAH).

The first of the two we recommend for low-risk use. PRANs, as their name implies, are not meant to handle heavy water pressure. Instead, they are more designed to repel water. To that end, they often use water-repellant chemicals. These might involve soaps, vegetable oils, or even petroleum. Such materials work to leave a layer alongside concrete pores that repels water while still leaving the pores themselves open. However, PRANs can also make use of chemically active or inert fillers, which act as densifiers to limit how much water gets into concrete pores. In either case, you don’t get watertight waterproofing with them.

What you do get is a solid dampproofing solution. So you could use PRANs for projects that will encounter a little moisture ingress. That might involve using them to repel rain off a structure or  to minimize the structure’s dampness.

So, what about PRAHs?

Now, these are what you should really keep an eye out for. These are recommended for long-term waterproofing against heavy water pressure. They tend to use a hydrophilic polymer plug or crystal technology. And that creates waterproofing that is impervious to damage or deterioration and capable of bridging cracks in concrete.

It makes PRAHs a perfect option for watertight waterproofing in any concrete structure.

(For even more details on these waterproofing admixtures and more, get our free e-book on the topic!)

We Recommend Krystol Internal Membrane
™
(KIM) for Thorough, Sustainable PRAH Waterproofing

If you want a specific PRAH recommendation, we suggest KIM.

When you specify it, KIM gets added to the concrete mix where it disperses Krystol technology throughout the entire mix. That way, once the concrete cures, the technology will rest dormant throughout the slab until it encounters water. Once that happens, the technology will activate and react to the water and nearby unhydrated cement particles to create interlocking crystals (which you can visibly see react in a sample via time-lapse here!). These crystals go on to fill up capillary pores and micro-cracks in the concrete. That blocks the water from passing through.

And it does that for the entire life of the concrete as KIM remains within concrete permanently.

So you get lifetime waterproofing for the simple act of adding KIM to a mix. There’s less labor involved and no installation risks, which will save your construction team time and money, expediting their work in the process. There are no shortage issues. And even better, KIM comes with several sustainable advantages:

Reducing site disturbance by eliminating the need for excavationEliminating any possible waste it has by coming in custom-size pulpable bagsContaining no volatile organic compoundsHaving NSF certification for safe use with potable waterEnsuring KIM-treated concrete can be recycled post-demolition

So when you use KIM, you can earn LEED points while also benefitting from less labor-intensive and time-consuming permanent, tear-free waterproofing.

Las Vegas' CityCenter

Waterproofing Membrane Failure Is a Sign to Revolutionize Your Design

When you think about external waterproofing membrane failure and how common it is, consider what the alternatives are. There are many concrete waterproofing admixtures out there that could better solve the issues that come with membranes. And if you want one that gives you an edge in the LEED sustainability framework, you don’t have to look farther than KIM. It will revolutionize your architectural design and help it become the green watertight structure you’re looking for.

Free e-book! Download it today to learn about the four aspects to consider when specifying crystalline waterproofing admixtures.

The post What Can External Waterproofing Membrane Failure Teach Architects about Sustainable Construction? appeared first on Kryton.

5 Benefits of Using Precast Concrete in Large Scale Projects

5 Benefits of Using Precast Concrete in Large Scale Projects

Precast concrete is one of the most popular construction materials used in large-scale construction projects. 

It’s durable, comes in any desired shade or color, and can be manufactured into virtually any shape. 

But the benefits don’t stop there. 

There are several other advantages of this special type of concrete, including: 

1. Longer shelf life than other types of concrete

Precast concrete has a longer shelf life than other types of concrete like traditional ready mix

This is because precast concrete is mixed, poured into molds, and allowed to dry inside the mold before transporting. 

The longer it stays fresh and dry before being used in your project, the longer it will remain strong and beautiful.

2. Low maintenance costs

Precast concrete structures are generally easy to clean. 

This is because they don’t have the same porous issues that other types of construction materials might experience when exposed to water or weathering over time.

Concrete’s smooth, solid surface doesn’t hold onto dirt and grime like sandstone or brick pavers do for instance, so it’s easier to keep clean. 

As a result, you won’t have to worry about spending money on labor costs for ongoing cleaning projects or hiring a professional company every year.

3. Reusability for future projects

Although precast concrete is extremely durable and long-lasting, there are certain companies that can take it apart or break it down if needed. 

This allows you to save money by reusing the material for future construction projects.

When working on a large-scale project, this can significantly lighten your financial burden. 

Precast concrete can be repurposed into a variety of different forms when designing large-scale projects, including piers, columns, structural frames for buildings, and beams. 

You’ll have the ability to customize your project based on your specific needs or desired aesthetics in order to achieve that perfect look with precast concrete components.

4. Sustainability

Using eco-friendly, recyclable construction materials like precast concrete is a great way to be more sustainable. 

Because it’s easier on the environment, it will result in lower levels of pollution over time. This helps benefit everyone involved, including people who live or work near your building site.

5. High quality

One thing you’ll notice about using precast concrete from Port Aggregates is its high quality.

Because it’s durable and long-lasting, it can be used for a variety of different purposes, withstanding harsh weather in any environment. 

Along with its high quality, precast concrete is also very cost effective and its design can be customized based on your specific needs or desired aesthetics. 

At Port Aggregates, all of our concrete products are made with the highest quality materials. It’s why we’ve been trusted for over 40 years! Contact us today to request a quote for your next large scale project.

The post 5 Benefits of Using Precast Concrete in Large Scale Projects appeared first on Port Aggregates.

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3)

Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3)

Last time in this interview series, we looked at just how effective Hard-Cem is as a solution for increasing concrete abrasion resistance. (For a recap, take a look at our first part and second part in this interview series!)

Unlike conventional surface-applied products, Hard-Cem has a worry-free application process. And on top of that, it has been proven to be effective through third-party testing. Part of that testing involved a modified ASTM C627 test, which showed just how resistant Hard-Cem made concrete to abrasive forces.

However, that’s not all it has going for it. Hard-Cem can also help construction professionals with their sustainability efforts. To see how, we asked Kryton Technical Director Jeff Bowman for more insight.

First, why don’t we review the environmental concerns surrounding concrete?

I’m sure many people are aware that roughly, for every 1 ton of Portland cement that’s manufactured, 1 ton of CO2 is released into the atmosphere. But of course, we don’t make buildings out of cement. We make them out of concrete. So I think it’s more useful to look at the final carbon load of the concrete itself.

Where can we learn about the final carbon load of concrete?

Now, there are many industry resources for this. The one that I’d like to draw from today is the Canadian Ready-Mixed Concrete Association’s environmental product declaration. It has a wide range of information and breaks concrete down by strength class. It also publishes industry benchmarks for each strength class.

But for just a broad view of the information displayed, you can see that depending on the concrete strength and many other factors, the carbon load of that concrete is normally going to range about 250 kg to 500 kg of CO2 per cubic meter of concrete.

That’s a significant environmental investment. So you really want to make sure your concrete is going to be durable and last a long time with minimal maintenance.

How does Hard-Cem help mitigate this carbon issue?

Well, first of all, just by having Hard-Cem reduce the wear and tear of abrasion on a concrete slab, you’re reducing, delaying, and often preventing some of that maintenance activity you’d otherwise need to do to replace that concrete or grind it down and resurface it. You can avoid using more concrete to fix it at a later time.

Hard-Cem-treated concrete (as seen on the right) can get double the wear life and an increased resistance to abrasion and erosion compared to regular concrete (as seen on the left).
Hard-Cem can also help you make more efficient choices with your concrete. Sometimes, the structural requirements of a project are satisfied with a typical mid-strength concrete.

But to ensure good abrasion resistance, a higher strength concrete is used instead. This increases the carbon footprint and is an inefficient use of resources. Hard-Cem may allow the lower strength option to be used instead while still designing for abrasion resistance. This can allow the use of more environmentally efficient concrete without sacrificing abrasion performance.

So, Hard-Cem can help reduce the carbon footprint now and down the road?

Yes, it can.

Remember, depending on the application, oftentimes, a higher strength concrete may introduce some problems that are actually detrimental to the overall performance of the job, such as increased shrinkage, cracking, and curling.

So using a more conventional mix with Hard-Cem can help you avoid these problems while still achieving excellent abrasion durability.

To get high-strength concrete, builders can add more silica fume or cement. However, silica fume’s maximum abrasion resistance increase is 13%. And to double that resistance with cement, builders would need 80% more cement content.

What about Hard-Cem’s carbon footprint?

The carbon footprint of Hard-Cem is very small. It’s only a percentage or two of the overall mix. As we often see with admixtures, it gives you very good performance value relative to its environmental impact.

What does all that mean for the lifetime carbon footprint of a structure?

Being able to produce a sustainable mix now is a very worthy goal. But it’s true that it’s also important to take a look at the lifetime carbon footprint of that structure. Depending on the maintenance and replacement cycle, the lifetime carbon footprint can be much higher than the original construction cost.

Now, we have a really interesting case study on this: the New Afton Mine. This is near Kamloops, British Columbia, Canada, and was built in 2011.

In the ore collection and processing area, within three years, the mine had so much wear and tear just from the mining equipment. And with the ore on the ground being pressed into the concrete and ground between those wheels, the owners had to replace, not just resurface but replace, the concrete in that area within only three years. So they were set on a three-year replacement interval, which is not very sustainable.

But in 2014, they replaced it with Hard-Cem concrete, and that concrete is still performing today. So what you can see here is that by investing in durability, they’ve been able to skip at least two replacement events. And they’re actually partway through what would have been their third.

Ever since Hard-Cem was added into replacement concrete for the mine, the mine has provided six continuous years of service without the need for more concrete replacement work.
 

In short, Hard-Cem has reduced the lifetime carbon footprint by almost 50%. And that’s just so far.

Thank you for all that detail, Jeff! It seems that Hard-Cem really will protect concrete against abrasion better than traditional methods. It’s also easy to install and doesn’t change a concrete mix’s properties. And on top of that, it reduces your carbon footprint, increases the durability and life cycle of your concrete, and has been in successful performance for years. What more could you ask for from a concrete hardening solution!

Finding the best product to increase concrete wear life isn't hard. It's Hard-Cem. Click here to learn more.

The post Concrete Abrasion Resistance: The Bad, the Good, and the Better (Interview Part 3) appeared first on Kryton.

4 Benefits of Using Concrete for Your Commercial Flooring

4 Benefits of Using Concrete for Your Commercial Flooring

When it comes to commercial flooring, concrete is one of the most popular choices.

For both creative and practical reasons, many businesses typically choose concrete floors for their stores, patios, and walkways. 

On top of being durable and easy to install, this type of flooring also offers an array of other benefits, including:

1. Infinite design possibilities

Concrete flooring is available in a wide range of colors and patterns. Any hue can be created to accent your commercial property’s interior.

In addition to picking from an array of beautiful colors, you can also create a unique custom design. For example, you may want a pattern or logo that matches the branding of your business. Some concrete contractors are even capable of creating specialty textures with stamped concrete that replicate wood grain or natural stone materials.

2. Easy to clean

If you have a high volume of foot traffic in your commercial property, concrete is the perfect flooring option. Not only does it withstand heavy use and wear and tear, but concrete floors don’t absorb dirt or moisture, making spills much easier to spot and wipe up. All you need is a mop or broom

Concrete floors are also more resistant to water damage, so your property is better protected against leaks and spills that can cause significant damage otherwise.

This type of flooring also doesn’t harbor allergens or bacteria, so it’s perfect for high-traffic facilities like hospitals where many people may be affected by dust particles and other allergens that accumulate in carpets or rugs.

3. Reduces noise pollution and energy costs

Concrete offers a high degree of sound insulation, which can be especially useful in the workplace.

If you work in an environment where there’s a lot of phone conversations and meetings taking place throughout the day, concrete floors will act as an effective barrier against the noise, rather than amplifying it like carpet does.

Additionally, concrete floors will also help keep your energy bill down in the long term because they offer a high degree of thermal insulation. This means that you won’t have to adjust your heating and cooling system as much throughout the winter or summer months.

4. Lasts up to 40 years

Concrete floors can last for decades (up to 40 years) as long as they’re properly maintained and installed.

With this type of flooring, you won’t have to deal with the hassle of replacing materials every few years, saving you time and money in the long term. However, it’s important to note that concrete isn’t perfect; you will likely need to repair a few cracks here and there as time goes on. Otherwise, these imperfections will compromise the integrity of your flooring and make it susceptible to further damage.

Fortunately, these types of repairs are relatively minor and can be completed in a matter of hours by a professional contractor without too much trouble. 

While there are many distinct advantages to using concrete for your commercial flooring, the success or failure of your project ultimately depends on picking the right contractor. Our professionals at Port Aggregates are highly skilled in creating beautiful, precise pours every time. Contact us today to request a quote

The post 4 Benefits of Using Concrete for Your Commercial Flooring appeared first on Port Aggregates.

Did you miss our previous article…
https://www.concreteideas.co/?p=1233

Interview: Why Krytonite™ Is the Unsung Hero of Construction Joint Waterproofing

Interview: Why Krytonite™ Is the Unsung Hero of Construction Joint Waterproofing

When you think of general concrete waterproofing, you probably envision membranes or crystalline waterproofing admixtures. But those aren’t the only aspects you need to consider for waterproofing. In fact, you should think of them as part of a more holistic approach to waterproofing. With only membranes or concrete admixtures, you’re not protecting your entire structure from water ingress. You’re missing out on protection for areas like tie holes, pipe penetrations, construction joints, and control joints.

It only takes one of those areas to remain exposed to water for there to be a water ingress problem. After all, as the Construction Waterproofing Handbook notes, 90% of water ingress issues happen within only 1% of the total structure’s surface.

That’s why you need solutions like our Krytonite

Swelling Waterstop, which seals concrete construction joints, protecting them from water. Such solutions, however, aren’t always given the attention they deserve.

To see why that is and why changing that in favor of Krytonite and more is better, we’ve turned to our territory manager for the Eastern United States, Christian Warren. With over 13 years of technical territory sales and operations management experience in concrete waterproofing construction and a background in ready-mix quality control, Christian knows just how valuable it is to give each concrete detail its due. And it’s why he’ll be discussing the value of Krytonite with us today.

Thank you for joining us here, Christian. While all aspects of waterproofing are necessary, waterstops like Krytonite are not often the first part to come to mind for builders. Why is that?

Thanks for inviting me.

As you mentioned, waterstops tend to not get the spotlight that’s needed. As they’re encased inside concrete, it becomes easy to forget about them (it’s like the old saying goes: “out of sight, out of mind”). That’s the case for both waterproofing successes and failures.

Successes tend to be attributed to the whole waterproofing system. And failures are no different. In either situation, it’s difficult to diagnose the waterstop’s successful contribution to the waterproofing system because it takes destructive techniques to the concrete joint to even see the waterstop’s condition.

What about Krytonite itself? What makes it stand out from the other waterstops on the market?

While the installation of Krytonite will be familiar to those who have installed bentonite or other swelling waterstops, the performance of the product is top-level.

For performance comparison, bentonite waterstops offer entry-level capabilities. They’re often inexpensive and mostly ineffective, even in low-risk applications. Part of that is due to their uncontrolled swelling and inability to hold up through wet-dry cycles. Because of that, there is a risk of the concrete blowing out due to high internal pressures, damaging the structure and incurring high maintenance costs as bentonite waterstops deteriorate quickly due to their clay-based composition.

Meanwhile, Krytonite offers greater performance. It’s designed with advanced elastomeric hydrophilic polymers, which is a superior form of technology to that of bentonite. As a result, Krytonite offers better compression sealing, stability, and longevity.

For compression sealing, Krytonite can swell more than 10x its original size. That is up to 4x more than competitors. And with its unique trapezoid shape, Krytonite can minimize the possibility of voids in the concrete.

For stability, Krytonite takes advantage of controlled swelling that allows for proper concrete strength development. It also ensures that Krytonite will never blow out the concrete due to unchecked internal pressures.

And for longevity, Krytonite is made to be cohesive, remaining intact for the life of the concrete structure. It’s a stark contrast to bentonite waterstops, as those are expected to disintegrate eventually, especially under extreme conditions and constant wet-dry cycling.

Of course, the greater value with Krytonite is not just the top-level performance but its cost and warranty. How Kryton has priced it and given it a 10-year limited warranty makes this waterstop a huge value add. It ensures that contractors can get guaranteed top-level performance for entry-level pricing with Krytonite.

So, Krytonite comes with great performance and value. A significant factor for the performance side of things seems to be the product’s superior swelling. Just how does that work? And for how long?

So, Krytonite will swell only in the presence of water. Depending on that water’s source and where the Krytonite is situated, contractors will see variations in that swelling. For instance, to see Krytonite swell up to 1,000% of its size, the waterstop would have to be unconstrained and come into contact with clean water. But when it’s placed within a joint, Krytonite will only expand as much as necessary. So that means expanding until it has enough pressure to stop the flow of water.

Krytonite will stay that way so long as there is water present.

Can it seal more than just construction joints with this ability?

Yes, you can use Krytonite to seal around other items fully embedded in concrete. These might be pipes, studs, or tie rod sleeves.

Is it able to withstand water contaminated with salts, acid, or hydrocarbons?

Whether the water has salt, acid, or hydrocarbon contamination, Krytonite will still be able to activate and operate as normal. It’s all thanks to its unique synthetic rubber technology. Because of the technology’s cohesive properties, Krytonite will not deteriorate if it encounters contaminated water.

Still, to maintain quality, I recommend that contractors confirm the Krytonite’s stability with Kryton’s technical department if the contaminated water levels are particularly high.

How do you get Krytonite to adhere to concrete? Does it matter if the surface is damp?

To get Krytonite to adhere to concrete, you should first apply Krytonite Adhesive along the center of the construction joint. Then, press the Krytonite into the adhesive. When doing this, you should have enough adhesive on the surface that it comes out the sides of the pressed Krytonite.

This is the most optimal way of making sure that Krytonite stays firmly attached to the concrete surface.

That remains the case even if the concrete surface is damp as the adhesive can keep Krytonite up off the damp surface enough for the Krytonite to bond properly. That only works, however, if the surface is not too wet and is free from debris and pooling water.

Of course, if you’re set on using a different adhesive, the next best option is a one-component polyurethane construction adhesive.

Once applied, will it need protection?

Yes. It is possible for Krytonite to tolerate some early water exposure, but you should still take care to protect it from as much rain and moisture as possible before pouring concrete. Otherwise, the Krytonite could end up debonding.

To prevent that from happening, make sure the Krytonite is fully shielded from weather and moisture. A way to accomplish that might involve covering it with plastic to put a barrier between it and any possible water ingress.

Is there anything you’d recommend adding with Krytonite to waterproof construction joints and details?

While Krytonite will do an excellent job at protecting concrete construction joints and other small details, it works best with the KrystolWaterstop System. Under that system, you have Krytonite as well as Krystol Waterstop Treatment

, Krystol Waterstop Grout

, and Crack Inducing Waterstop.

When used in varying combinations, they can offer contractors a robust waterproof jointing system that’s available for low- and high-risk areas.

For low-risk areas, contractors can bring their concrete to a saturated surface-dry (SSD) condition and then coat it with the Krystol Waterstop Treatment. The Krystol technology in that treatment will react to water and unhydrated cement particles to form crystals that stop water from passing through. Then, the contractor can install the Krytonite to the concrete, further sealing the joint from water.

That acts as double protection for a structure that isn’t expecting to see a heavy amount of water ingress.

For higher risk areas, this system offers triple protection. That requires the same SSD condition and the same Krystol Waterstop Treatment and Krytonite application. But after that, contractors can apply Krystol Waterstop Grout to a keyway that’s formed with the help of the Crack Inducing Waterstop, adding extra Krystol technology protection.

All of that builds redundancy into the waterproofing system, giving it better protection from possible installation and material failures and from water ingress.

If I were interested in installing Krytonite and the rest of the Krystol Waterstop System, who should I go to?

We have territory managers and distributors all around the world who can help you. To find out who’s nearest to you, just send your request to Kryton on our contact us page or call Kryton’s headquarters anytime at 800-267-8280. There is always someone ready to help. And of course, if you happen to be in the eastern area of the USA, I am always happy to talk with you to see how Krytonite and the Krystol Waterstop System can best serve your concrete waterproofing needs.

Thanks again for chatting with us, Christian! We’re glad to see just how valuable Krytonite and the Krystol Waterstop System can be.

The post Interview: Why Krytonite™ Is the Unsung Hero of Construction Joint Waterproofing appeared first on Kryton.

Did you miss our previous article…
https://www.concreteideas.co/?p=1228

4 Advantages of Polished Concrete Flooring

4 Advantages of Polished Concrete Flooring

Polished concrete flooring has gained popularity in recent years for its durability, low maintenance, and affordability. If you’re thinking about getting your floors redone but haven’t narrowed down your choice of material just yet, continue reading.

Polished concrete floors are perfect for both homes and businesses. They can be used in a variety of spaces, including kitchens and garages. Some of the biggest advantages of this type of flooring include:

1. Extreme durability

Concrete can last for decades without needing to be repaired or maintained. It doesn’t peel, scratch, or fade over time like most other types of flooring. This makes it a particularly great choice for cat or dog owners whose pets tend to scratch up the floors. Not to mention, it will save you money in the long run by reducing repair or replacement costs.

2. Requires very little maintenance

In addition to being extremely durable, polished concrete flooring is also easy to clean and maintain when compared with other types of flooring. Pet stains and spills come up easily and can be swiftly cleaned away without the need for special and expensive cleaners. This makes polished concrete a great choice if you’re looking for flooring that will stay beautiful without requiring time-consuming care and maintenance. 

3. Endless color options 

Contrary to popular belief, concrete doesn’t have to be gray and dreary. Polished concrete comes in an array of beautiful colors, including both classic and modern choices that will blend seamlessly with your existing décor, giving your home or business an entirely new look.

4.  Affordability

One of the biggest advantages of polished concrete floors is the low cost. This flooring is an excellent choice for homeowners and business owners who want to install new flooring but can’t afford pricey wood or marble. 

While there are many distinct advantages to polished concrete, the success or failure of your flooring project ultimately depends on picking the right contractor. Our professionals at Port Aggregates are highly skilled in creating beautiful, precise pours every time. Contact us today to request a quote for your next project!

The post 4 Advantages of Polished Concrete Flooring appeared first on Port Aggregates.

Why Maturix® Is Leading the Concrete Sensor Market with Next-Gen Tech

Why Maturix® Is Leading the Concrete Sensor Market with Next-Gen Tech

Technology is always evolving. That hasn’t been any less true for the concrete monitoring field. Not long ago, contractors were relying solely on field-cured concrete cylinders to understand the compressive strength development of their concrete. It was a time-consuming process with room for error. After all, field-cured cylinders cure at a different rate than concrete placed en masse. And they need to be transported for testing off-site. But now, there are many concrete sensors available on the market to simplify this process and provide more accurate insight into concrete strength.

One in particular has drawn attention over the past year or so. That would be the Maturix Smart Concrete Sensors. These next-gen sensors are helping to lead the sensor market, drawing interest from all over, and we’re here to explain why that is and why you should join the excitement.

A Maturix Sensor stands next to the Most Innovative Products Award logo for 2020.

Maturix Sensors Offer Award-Winning Concrete Monitoring

These heavy-duty sensors transmit concrete temperature data directly to a cloud-based platform and calculate concrete strength from there on a regular basis each day. That process allows them to provide builders with real-time remote concrete monitoring.

Their setup is relatively simple too. It starts with our Maturix expert creating an online account for builders. So all builders need to do is log in when ready. From there, they attach a cost-effective thermocouple wire to rebar. That in turn gets plugged into Maturix’s transmitting sensor, which is located outside the concrete placement. Builders can then start or refine the monitoring start time remotely through any device that can access a web browser.

That way, contractors can eliminate the time, labor, and money required to physically go to the worksite to collect data on concrete placements. Instead, they can easily access their concrete data 24/7 through the Maturix platform. They can also receive online alerts through Maturix software. That lets them know exactly when their concrete’s temperature has exceeded critical thresholds or fallen out of spec and when their concrete’s compressive strength has been met. For concrete strength validation in particular, that can save up to three days per pour.

Due to Maturix’s ability to streamline concrete monitoring in such a cost-effective way, the sensors earned a Most Innovative Product Award in 2020. And it wasn’t long after that when they garnered additional attention. Soon, they starred in an article about the future of concrete sensor technology, already showing just how much of an impact these sensors made.

A Maturix Sensor is angled to face the left without its cable.

On Top of That, They Are Built to Last Long

To add to their award-winning appeal, the Maturix Sensors have been redesigned. They can now withstand the harshest construction and precast manufacturing environments.

Given a durable casing that increases their resistance to both water and dust, these sensors will last for more than the entirety of one project. And unlike other sensors, Maturix Sensors are not gone after a single use. Instead, the thermocouple wires attached to the sensors are disposable. That way, the sensors can be used for as many pours as a contractor likes. That makes them ideal for those who are looking for a streamlined cost-effective solution on monitoring concrete temperature, maturity, and strength.

A builder is holding and looking at a smart phone in his right hand while holding a clipboard in his other hand.

Both These Features Help to Ease Worksite Information Sharing

With the ability to provide instant updates on concrete development and remain operational for many pours, Maturix Sensors make it easier to share information. There’s no concern about needing to replace them, after all. So contractors can instead focus on what’s important: the data surrounding their concrete’s development.

Because that data is received instantaneously, contractors can remain fully aware of any potential issues that might develop. Whether there’s a need to manage the mass concrete differential, cold weather, or hot weather, Maturix Sensors can ensure contractors know about it before it becomes a problem.

However, that doesn’t have to benefit just contractors. If other worksite team members need to know this information, a contractor only has to send that data in the form of a report with the press of a button through the Maturix cloud-based platform. That report will then be transmitted digitally to whoever needs it, expediting report work and worksite approvals in the process with very little effort required.

Contractors don’t have to worry about losing that report data either. The Maturix platform ensures that all data is logged and backed up, so contractors and their team have documentation associated with their project, which can help reduce liability.

A bridge has been partially constructed by the general contracting firm Kruse Smith.

ll of Which Has Helped Create a Number of Success Stories

After hearing about Maturix and trying it out for themselves, many contractor companies were happy to report their own success stories with Maturix features.

They’ve Helped The Walsh Group Ltd. Streamline the Monitoring of Multiple Wall Placements

In an interview with our Maturix specialist, Kris Till, Tanner Santo, a superintendent for The Walsh Group Ltd., stated that there were “a lot of moving parts and challenging logistics” to constructing the Southeast Treatment Plant in San Francisco. The company had to determine how to monitor 300 to 400 wall placements. And they had to determine how to minimize any downtime while doing so.

Their original process for this would have been time-consuming and costly. They would need to take multiple concrete cylinder samples, which would add on to the cost of the work. And they would also need to wait for a testing lab to determine when the concrete had reached minimum strength. Without the testing lab’s go-ahead, they would have to wait to remove the formwork, prolonging the progress of their work.

To expedite this process, The Walsh Group Ltd. decided to add Maturix. That streamlined their monitoring significantly. Santo was able to receive notifications on his cell phone, letting him know when the concrete reached minimal strength. As a result, he and his team did not have to take additional concrete samples or wait for a go-ahead and could safely strip formwork, knowing just when the concrete had hit minimal strength.

nd They’ve Improved the Documentation and Quality Control Processes for Kruse Smith

Hoping to innovate technologically and improve their on-site performance, the Norwegian contractor Kruse Smith also chose to work with Maturix. They made this decision with their work on the E39 highway project in mind specifically.

One of their biggest concerns surrounding this work was dealing with the weather. They would be working in freezing temperatures with lots of ice and snow. So they had to protect their concrete from freezing before it cured.

For previous projects, they kept an eye on this concern with manual data loggers. They were digital, but they didn’t transmit data online. As a result, Kruse Smith had to send out workers to physically check their concrete placements individually to collect temperature data. Then, the workers would have to do analytical work based on the information they recorded to get any insight from that data.

With Maturix during their E39 project, however, they received that information instantaneously through an Internet-connected device, which came with generated graphs and analysis already there. So there was less work involved for faster, more accurate results.

In turn, that allowed them to focus more on better active documentation and quality control. They could bring that data up in meetings with team members and their client to discuss the progress of their work and what they could improve. It created a lot of transparency and trust. And it made it easier to spot any possible issues with temperature drops or a slower concrete curing process.

A coffee cup on a light-brown wooden table rests in the background as a builder holds a tablet in their left hand looking at sensor data in the foreground.

That Just Proves How Reliable and Cost-Effective Maturix Is in the Long Run

In just a short while, Maturix has won an award for its technology and has proven itself out in the field as a reliable tool for saving contractors time and money when they monitor concrete. From streamlining the monitoring of around 300 to 400 concrete wall placements for The Walsh Group Ltd. to enhancing Kruse Smith’s active documentation and quality control, Maturix Sensors show that it’s possible to simplify concrete monitoring and cut costs without losing the quality and accuracy contractors are looking for in a worksite.

Convenient. Cost-Effective. Remote. Concrete monitoring with Maturix. Book a demo today!

The post Why Maturix® Is Leading the Concrete Sensor Market with Next-Gen Tech appeared first on Kryton.

5 Reasons to Choose a Rip Rap Retaining Wall

5 Reasons to Choose a Rip Rap Retaining Wall

rip rap retaining wall

A retaining wall is necessary for any landscape project. 

Without them, shorelines will quickly erode or flood, and gardens become overgrown with weeds.

The most popular type of retaining wall is the traditional concrete block style that has been around since the 1950s.

However, plenty of other options are available. One such option is a type of limestone called rip rap.

This bulky stone offers an array of benefits. When used as a retaining wall, it’s:

1. Aesthetically pleasing

A rip rap retaining wall is an attractive way to add some interest and excitement to your yard or city shoreline. The irregular shapes of the stones give it a more natural, rustic look that complements a variety of styles.

2. Eco-friendly

Because limestone can be obtained from quarries, it has less environmental impact than other materials like concrete and steel. It is also a sedimentary rock, which means that it’s formed over time from the weathering of other rocks.

The process of obtaining limestone does not involve chemical treatments or strong acids like some materials do. It helps to protect the environment and human health during and after its creation.

In addition, limestone is a natural sponge that absorbs water. This makes it an especially good choice for areas like the South that experience heavy rainfall and hurricanes.

3. Great for protection against the elements and erosion

Thanks to its irregular shape, rip rap can be useful in more urban areas to protect buildings from heavy rains and flooding. It also prevents soil at construction sites from getting washed away by rainfall or runoff water that carries mud and silt into nearby waterways.

4. Long-lasting

Rip rap is a long-lasting material that can remain in your landscape for many years. Since it’s made from limestone, you can also rely on this material for its strength and durability. Unlike certain materials like cinder blocks, rip rap will not break down over time.

In addition, the limestone itself has been around since prehistoric times and will likely be here until another type of rock comes along to replace it. This provides an excellent return on investment compared with materials like wood or plastic which need replacing every few decades.

5. Easy to maintain

One of the final benefits of rip rap is that it’s easy to maintain. Unlike traditional concrete block walls, you don’t need to replace these stones since they’re not attached together with mortar or cement.

Instead, each stone rests on top of the other and can be removed when necessary (if repairs are needed or if you want to create a new design).

In addition, the irregular shapes and sizes of rip rap makes it easy to find just what you need for your project, whether that’s one large piece or several smaller ones. This is unlike many other types of retaining wall stone which are sold in pre-cut pieces.

Port Aggregates offers three types of rip rap: 10lb rip rap (6-10”), 30lb rip rap, and 55lb rip rap. Whether your goal is to prevent erosion or simply create a garden, we’ve got just what you need. Our high-quality crushed limestone is available in numerous sizes to suit your special needs. Contact us today to request a quote

The post 5 Reasons to Choose a Rip Rap Retaining Wall appeared first on Port Aggregates.

Did you miss our previous article…
https://www.concreteideas.co/?p=1214