Choosing a Waterproofing Strategy for Below Grade Applications: A Fourth Alternative

Choosing a Waterproofing Strategy for Below Grade Applications: A Fourth Alternative

Considering the right waterproofing strategy from the design stage is crucial for the success of below grade projects. However, there is no one right answer.

So when faced with this decision, the designer of a project will often start by selecting from several types of external membranes. These include unbonded, fully bonded, and compartmented systems. Each of which will affect the outcome of a project differently.

But no matter their choice, a designer will have many variables to consider.

That can be difficult to navigate. So to help you determine the best strategy for your project needs, let’s look at the factors that affect waterproofing decisions and outcomes and whether there’s a better alternative altogether.

The Factors That Affect the Selection and Outcomes of the Three Membrane Types

Designers typically select one of the three waterproofing membrane types based on the following factors:

Perceived risk of using the systemAccessibility for repairing system defectsQuality control tools of the selected systemOverall cost

Perceived Risk

Out of the three waterproofing membrane categories, there is one that is seen as less risky.

A bitumen waterproofing membrane rests partially unrolled on the ground.

Many View the Use of Fully Bonded Systems as the Reliable Waterproofing Strategy

The idea is that in case of failure, water cannot travel freely between the membrane and structural concrete, so any damage will be localized. That minimizes the cost and scope of the repairs needed.

Despite that big advantage, fully bonded systems also have their drawbacks. They are not flexible when bonded. They cannot bond properly to the structural concrete if not applied properly and in dusty conditions. And most importantly, these bonded systems are thin, making it easy for them to get damaged.

Still, these particular systems tend to remain less risky than others, even when it comes to application errors (see Figure 1).
On a graph that compares risk and application errors, unbonded membrane systems are the most at risk while compartmented membrane systems are at second place and fully bonded membrane systems are last.

A group of construction workers are working on pouring concrete at a worksite.

That Risk Changes, However, When Bad Concreting Practices Are Involved

Note how the dynamics change with bad concreting practices. The risk associated with application errors deviates as follows (see Figure 2).

The risk of application errors change when bad concreting practices are involved, making fully bonded membrane systems a bit riskier but still not as risky as unbonded membrane systems.

In this scenario, the bond between the membrane and structural concrete would have been compromised. Once that occurs, a fully bonded system will become riskier than a compartmented system due to the following reasons (among others):

Membranes in fully bonded systems tend to be thinner than ones in compartmented systemsThey don’t have horizontal and vertical protection as many compartmented systems doThey also do not have the same reactive system for repairs with flanges in each compartment

No matter the system, however, the risk related to application errors is shown as much steeper (as seen in Figure 2) when there are bad concreting practices involved. You need only compare the risk to a project with good concreting practices to see the significant impact (as shown in Figure 1).

ccessibility for Repairing System Defects

For stakeholders who prefer a waterproofing system that workers can access for repairs if something does go wrong, compartmented systems are perceived as the best (see Figure 3).

Why is that the case?

It’s mainly because it is possible to attempt to repair each leaking compartment of the system with injection flanges.

As for the other waterproofing systems, the unbonded one remains the riskiest, as it would be very hard to determine the source of its leakages.

Again, what adds to the complexity of just selecting the best perceived waterproofing system is a poor concreting application.

In this case, combining a poor concreting application with a compartmented system means water is more likely to migrate between compartments. That will increase the risk of the compartmented system’s waterstops not bonding adequately to the structural concrete. At the same time, isolating individual compartments in the system and repairing them with flanges will become less effective, since the water will be migrating between adjacent compartments. And that leads to a change in risk assessment (as seen in Figure 4).

The risk to application errors graph shows poor concreting practices increase the risk of compartmented membrane systems so that they are closer in terms of risk to fully bonded membrane systems.

Quality Control Tools

For stakeholders who depend on quality control tools to ensure that a membrane is installed properly, a polyvinyl chloride (PVC) compartmented system might be more appealing. Usually coming with the desired quality control tools, it has an edge over most types of fully bonded and unbonded systems.

The quality control tools that a PVC compartmented system typically comes with include a double-wedge welding of membrane overlaps. And that’s followed by pressure testing to guarantee that the overlap is properly welded.

Other quality testing measures for the overlaps in this case might include vacuum testing and spark testing.

All the above are great tools in theory. However, this quality control edge tends to be more theoretical than realistic in many instances. Such instances include (but are not limited to) vertical membrane applications. After all, it would be very unpractical to make a double-wedge welding joint and test each individual joint in vertical (or otherwise complicated) applications.

Overall Cost

Cost per system is not universal and differs in each market. But in general, an unbonded system is the cheapest, while fully bonded and compartmented systems tend to be more expensive.

However, when we consider what I call the membrane system lifetime value, cost assessment tends to be more complicated. The lifetime cost would include the initial cost of the system, the expected life of the system, and repair costs of the membrane over the service life of the structure. Once again, concreting practices play an important role with the associated costs of repair and replacement. Choosing a waterproofing system based on cost is therefore a complex decision that includes many variables, which are hard to quantify.

A group of construction workers at a worksite are helping to pour concrete for a project.

Why Concreting Adds Complexity to These Factors 

Waterproofing is an interconnected network of activities. So rationally selecting the appropriate system depends on many variables. A common variable that adds to the complexity of the selection and on the consequences associated with that selection is the quality of the concrete. That in turn is a function of the structure’s concrete mix and application. Therefore, it is impossible to assess the performance of the waterproofing membrane system in isolation without considering the concrete’s quality.

A construction worker is pouring KIM into concrete at the time of batching.

How to Simplify and Improve a Waterproofing Strategy with a Fourth Alternative

The fourth alternative is not a compromise between an unbonded, fully bonded, or compartmented system. A fourth alternative is a better waterproofing strategy. It’s a waterproofing solution that simplifies a designer’s choice while providing more predictable outcomes.

Simply put, the fourth alternative is to design and construct a waterproof structure that can sustain itself without external protection. That eliminates the concern of that external protection defecting or failing, as it transforms the concrete itself into a solid waterproof barrier. It also minimizes the need for extra labor or application time, as there is no membrane to install.

But how is this waterproofing strategy possible? What makes it work?

It all functions off the following principles.

The Structure Should Be Waterproof for Its Entire Intended Service Life

This is attained by using quality concrete, proper jointing systems, and adequate reinforcement.

The latter follows conventional construction methods, so let’s focus on those first two aspects.

To obtain quality concrete in this case, builders need to ensure that they use a suitable mix that is permanently waterproof. An easy way to do this is by applying a reactive waterproofing admixture, such as Kryton’s Krystol Internal Membrane
™
(KIM), with the established best practices for mixing, placing, and curing concrete.

Once added directly into the concrete, KIM disperses Krystol technology throughout the concrete mix, which remains dormant until water is nearby. When in the presence of water, the chemical technology reacts, forming interlocking crystals to block pathways for water in the concrete. That reduces the concrete’s permeability, shrinkage, and cracking. It also improves the concrete’s ability to self-seal for the rest of the structure’s life span.

But what about proper jointing systems?

Special consideration should be given to jointing details, including construction, expansion, and control joints. Using a combination of physical and chemical barriers is recommended for long-term performance. A good example of this is the Krystol Waterstop System. It offers three levels of protection for all jointing details. Depending on the level of protection chosen, the system might make use of two types of waterstops (one for sealing joints and one for crack control), a crystalline slurry that uses Krystol technology for concrete joints, and a crystalline grout.

For Extra Reliability, Designers Need to Determine a Suitable Repair Strategy

With a reliable waterproofing admixture and jointing protection system, a concrete structure should be quite safe.

But it’s important to include redundancies into a waterproofing system. It’s what gives a structure extra protection in case the situation does not go as planned. But to include those redundancies, designers need to consider a suitable repair strategy.

The repair strategy should be based on durable materials that are compatible with concrete. It should not be cosmetic and planned for the short term as it has to be able to fix the problem at its source. Otherwise, the problem will remain present, causing more damage in the long run.

dditional Protection Needs to Be Considered When Handling Projects That Are Considered High-Risk

These can include liveable basements, museums, and other structures where the cost of repairs is very high.

If that is the case for a project, a designer could add a membrane system to the waterproof structure. Selecting one will depend on the previously mentioned factors. But in general, as discussed earlier, the quality of concreting practices will affect how well a membrane type will perform. So it’s important to maintain good concreting practices no matter which type of waterproofing membrane system is chosen.

In short, the fourth alternative is a waterproofing strategy that fundamentally relies on a self-sustained waterproof structure free of application and additional labor concerns, a suitable repair strategy, and when necessary, the extra protection of a waterproofing membrane system.

Free e-book! Download it today to learn about the four aspects to consider when specifying crystalline waterproofing admixtures.

The post Choosing a Waterproofing Strategy for Below Grade Applications: A Fourth Alternative appeared first on Kryton.

Did you miss our previous article…
https://www.concreteideas.co/?p=1360

Avoiding Concrete Cracks in the Winter: How to Prepare Your Concrete

Avoiding Concrete Cracks in the Winter: How to Prepare Your Concrete

One of the most dreaded things about winter is its damaging effects on concrete. This can be a costly and frustrating problem, but it doesn’t have to be! 

There are numerous easy ways to help avoid concrete cracks this winter. Follow these steps to prepare your driveway or other concrete slabs for the cold months ahead.

Seal your concrete surfaces 

In winter months when snowfall and low temperatures freeze the top of your concrete, frost damage can occur if they are not sealed. Sealing your concrete protects the surface and makes it easier to remove any ice as well. 

Remove debris

Regularly scraping away any leaves that fall onto your concrete as the seasons change is vital to protecting your driveway or other concrete fixtures. Leaves and other organic matter will prevent your concrete from getting the proper exposure to sunlight it needs in order to avoid freezing.

Repair any damaged concrete

If your concrete has become damaged or is already cracking, you need to take care of it as soon as possible. 

Cracked concrete exposed to freezing temperatures can cost thousands of dollars to replace and is likely to continue deteriorating over time if you do not repair it before temperatures continue to drop. 

Be sure to inspect all areas of your property that have concrete. It is possible that your gazebo, deck, or walkway might need replacement too.

Be careful with salt 

Using too much salt as a melting agent can actually damage your concrete, causing it to become brittle and more likely to crack. It should only be used in moderation. Fortunately, in Louisiana, this shouldn’t be too much of a concern for us. 

If you follow these steps, you can avoid the nightmare of having to replace cracked concrete this winter season. Don’t wait another day to start protecting your concrete. 

With the Louisiana weather being as unpredictable as it has been the past couple of years, there’s no telling what this winter will bring. Start taking steps to protect your driveway now and contact Port Aggregates for assistance. We look forward to helping you keep your concrete safe this winter!

The post Avoiding Concrete Cracks in the Winter: How to Prepare Your Concrete appeared first on Port Aggregates.

Did you miss our previous article…
https://www.concreteideas.co/?p=1357

What Is the Maturity Method?

What Is the Maturity Method?

Over the past year or so, you’ve gotten to learn about our latest product, the Maturix Smart Concrete Sensors, and the benefits they offer. Throughout it all, you’ve probably heard us mention the maturity method once or twice. It’s a concept that our wireless concrete sensors leverage to improve the process of concrete monitoring. But what is it exactly?

To answer that, we’ve brought on Marina Salvador, the instructional designer for the creator of the Maturix Sensors, Sensohive Technologies ApS. Read on to see her define the maturity method these sensors use, what the steps involved in this method are, and what you can do to learn more.

A hand is holding a black tablet that shows results from Maturix Sensors monitoring concrete.

The Definition 

The maturity method is a non-destructive test method that can be used to estimate the early-age strength development of concrete. The main assumption of the maturity method is that if two samples of the same concrete mix have the same maturity, they will also have the same strengtheven if they were cured under different temperature conditions

Thanks to new technologies and smart maturity systems like Maturix, which uses wireless temperature sensors and cloud computing, the maturity method is now a fast and easy method to use for real-time strength estimation.

The maturity method has three main steps, which you can read more about below.

A diagram divided into six rectangles shows the six steps to calibrating maturity. These include batching the concrete mix and making some samples, inserting temperature sensors into some of the samples, monitoring the temperature and calculating the maturity, performing break tests at specific maturities, plotting strength versus maturity, and fitting a maturity curve.

Method Step 1: Make a Maturity Calibration

A maturity calibration determines the relationship between the maturity and strength development of a specific concrete mix.

To find this relationship, you make some samples with the concrete mixture that you will use in your project and instrument some of them with temperature sensors. The samples are then cured under the same conditions, and the temperature history is measured using the sensors. Then, you need to perform break tests of the samples at different test ages to determine their compressive strength. Once that is done, plot the strength data from the break tests and the maturity from the temperature history in a graph. Lastly, find the best-fitting curve through your data points, also known as the maturity curve.

Note: You can add the strength results and maturity values in Maturix, and the system will automatically plot the maturity curve.

A diagram is divided into three rectangles that describe the steps in estimating the in-place concrete strength. These include batching the same concrete mix as the one used in the lab tests, inserting temperature sensors into your structure to monitor the maturity of your concrete, and estimating the concrete strength with a maturity curve.

Method Step 2: Estimate the In-Place Strength

Once you have performed a maturity calibration for your concrete mixture, you can estimate the in-place concrete strength by placing temperature sensors inside your structure. These will calculate the maturity index in your concrete and relate it to a certain strength from the maturity curve.

Note: With Maturix, it is extremely easy to follow the strength development, as the software will display the results in real time, and these can be accessed remotely. Moreover, it is possible to set up alarms to get notified when the desired strength has been achieved.

A construction worker is creating concrete samples to test.

Method Step 3: Validate the Maturity Calibration

Validating the calibration and maturity curve regularly is important because there might be small variations in materials, batching equipment, and conditions that might affect their accuracy.

To validate your maturity calibration, make some samples during the next batch and compare the strength estimated using the maturity method with the strength obtained from other testing methods.

ASTM C1074 strongly recommends not to perform critical operations without verification of the maturity calibration or without strength validation using other test methods.

A long bookcase full of colorful books curves away from the foreground in parallel with a black-brown railing.

Further Reading

To learn more about the three steps of the maturity method, we recommend you read these articles: “Maturity CalibrationEstimate In-place Strength with the Maturity Method,” and “Validating the Maturity Calibration.”

Convenient. Cost-Effective. Remote. Concrete monitoring with Maturix. Book a demo today!

The post What Is the Maturity Method? appeared first on Kryton.

Reducing the Risk of Hot Weather Concreting with Maturix® Sensors

Reducing the Risk of Hot Weather Concreting with Maturix® Sensors

As summer approaches us here at Kryton in Canada, we know that many of you will be planning your hot weather concreting. While the weather can be a joy to experience for yourself, it can also make concreting more challenging.

For one, high temperatures will accelerate the early-age strength gain of your concrete. This sounds like a great way to naturally expedite your schedule. But it’s hard to take advantage of that when you aren’t sure of how fast your concrete is developing.

Moreover, once high temperatures get excessively high, your concrete can develop a number of durability concerns. For instance, it can end up with delayed ettringite formation (DEF). And DEF can be quite a destructive force in moist environments as it can cause your concrete to prematurely deteriorate.

Outside of DEF, your concrete can also experience drying shrinkage. This happens when the concrete has suffered moisture loss after hardening. It increases the concrete’s tensile stress, raising the likelihood that the concrete will crack or warp.

All of which is terrible for constructing a solid, reliable structure. However, you can reduce the risk of this happening during hot weather concreting with our Maturix Smart Concrete Sensors.

A Maturix Sensor is attached to fencing ready to support hot weather concreting.

So, How Do Maturix Sensors Help?

They give you an easy way to stay on top of your concrete’s thermal control plan. Once connected to type K thermocouple wires, which are positioned and attached to reinforcing rebar, the Maturix Sensors wirelessly transmit temperature data to a cloud-based platform every 10 minutes. Then, the platform takes that data and calculates the maturity based on the readings and a specific concrete calibration curve. In return, you get a result that accurately determines your concrete’s current strength. All of which allows you to tell exactly what temperature and strength your concrete has every day. And because this information is transmitted wirelessly, you can access it through any connected device, keeping you up-to-date on the situation, no matter where you are. Additionally, you can easily set up alarms to receive notifications via SMS or email when a certain temperature, strength, or maturity has been reached.

That in turn allows you to stick to the recommended temperatures for hot weather concreting and operate proactively as specified in ACI 305R: Guide to Hot Weather Concreting.

Of course, that’s just the start. There are a couple other advantages that come with Maturix. Let’s take a look at them.

They Enable You to Leverage Early Concrete Strength in Hot Temperatures

To start, with the insight they provide on strength development, you’ll notice right away when your concrete starts reacting to hotter temperatures. After all, you’ll see exactly when the concrete’s strength accelerates. So you’ll be able to plan your schedule to work with this expedited strength development. In turn, you’ll find yourself stripping forms at a faster rate, letting you keep up with any tight deadlines you have.

nd Their Real-Time Alert System Makes It Easy to Avoid Potential Temperature Concerns

You can set up this alert system to notify you and your team when the concrete meets, exceeds, or goes below critical thresholds. So long as you have a connected device, you’ll immediately know when your concrete is doing well and when it needs adjustments. That way, if your concrete ever exceeds recommended temperatures, you and your team can take the required actions to cool it down.

In short, Maturix empowers you to fix temperature concerns before they ever become a problem.

A confused young businessman looks at many colorful twisted arrows on the blackboard background.

Why Choose Them Over Other Available Sensors for Hot Weather Concreting?

Still, there are other sensors out there. What makes Maturix worthy of more consideration?

Well, Maturix comes with a number of unique features you aren’t likely to find elsewhere. Some of which include the following.

You Get Local Weather Data as Well as Temperature and Strength Data

To further bolster your understanding of your concrete’s development, Maturix Sensors gather data about the local weather. That way, you don’t just know how your concrete is doing. You also get a sense for what conditions your concrete faces throughout your construction project. Whether you have to deal with hot weather and rain or any other weather combination, you get the weather data integrated in your reporting.

You’ll Even Be Able to Reuse Maturix Sensors for Multiple Projects

One of the best cost-effective measures of these devices is that they don’t work like single-use sensors. These aren’t disposable devices that remain within the concrete. Instead, they are connected to disposable thermocouple wires. As a result, once you complete a project, you are free to take the sensors with you and use them for other projects for as many times as you like. This allows you to take advantage of all the features Maturix offers at a low cost. After all, you don’t need to spend a big chunk of your budget on new sensors with Maturix.

In the end, Maturix is a worthwhile investment that cuts down on your costs and makes hot weather concreting much less risky.

A Maturix Sensor is attached to metal with light shining on it.

So Why Not Give Them a Try for Your Next Hot Weather Concreting Project?

If you’re expecting to deal with such a project soon, then it might be time for you to find out how advantageous it can be to have Maturix with you. You’ll soon wonder how you could have gone so long without it! But don’t just take our word for it. Check out our Maturix page to see for yourself.

Convenient. Cost-Effective. Remote. Concrete monitoring with Maturix. Book a demo today!

The post Reducing the Risk of Hot Weather Concreting with Maturix® Sensors appeared first on Kryton.

Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor

Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor

Providing the best results for clients: that’s what most contractors strive for. And Kruse Smith is no different. That’s why the Norwegian contractor has recently started digitalizing their work for the E39 highway project. As part of this process, they took a special focus on technological innovations and how those could improve their on-site performance. That has allowed them to minimize any repetition, time consumption, and labor costs associated with their work while producing more cost-effective and timely end results.

More specifically, it has allowed them to effectively develop the 19 km (11.8 mi) of the E39 project that they are responsible for.

However, the project as a whole is likely to be the largest coastal highway infrastructure Norway has ever conducted. At about 1,100 km (683.51 mi), the project is expected to replace multiple ferry travel points and cut down travel time from 21 hours to just 13.

To optimize their part in this extensive project, Kruse Smith conducted a digital pilot project, enacting innovative changes, such as replacing paper plans with 3D modeling and BIM and using wireless sensors for concrete monitoring.

These wireless sensors (also known as Maturix Smart Concrete Sensors) help optimize Kruse Smith’s work on-site by enabling the contractor to remotely monitor the temperature and strength development of multiple concrete structures in real time. It’s a method that saves them time and money that they would have otherwise spent on physically checking each concrete form.

For more details on how this innovative technology is helping the contractor move forward on the E39 project, the creator of Maturix, Sensohive Technologies ApS, conducted an interview with two members of Kruse Smith’s team, Marius Røksland, and Asbjørn Stålesen.

The interview gave great insight into the use of Maturix in the infrastructure project. And we are happy to add to the conversation, sharing additional interview details on how Maturix helped Kruse Smith in their everyday work.

To talk about Kruse Smith’s work on the E39 project and their use of Maturix, we have two members from their team. Can you tell us a little bit about yourselves?

Marius: My name is Marius Røksland, and I work for Kruse Smith as a project engineer.

Asbjørn: I am Asbjørn Stålesen, and I’m the project manager for the new E39 between Kristiansand and Mandal.

What are you currently working on?

Marius: At the moment, at this jobsite, we are building 19 bridges, completing the new E39 highway. It’s a four-speed, 110-kilometer [68-mile] highway on the coast of Norway, all the way south. It is one of many small stretches of roads that we have been constructing.

For this one, now, we have been working for a couple of years and still have one-and-a-half years to go.

This bridge is about 370 meters long. It’s a dual lane, so we are doing two at the same time.

How far are you with the bridge?

Asbjørn: Currently, we are 90-, 95-percent finished. We have cast all three bridges, but we have some of the small works around them left before we can hand them over to the client.

On this particular project, we have all cast-in-place. We have no precast, and we do this with quite big formworks.

These are 120-meter [393.71-foot] bridges, but we reuse the formworks from one to the other. So we try to do as much of that as we can, but it’s important for us to think industrial scale because we’ve been building so many bridges in such a short time. This is also why monitoring the curing process enables us to move on a lot faster as we know exactly when we can remove the formwork.

What are the challenges of this project?

Marius: The weather is a challenge as it is way too cold. We have problems with ice and snow here in Norway, especially now when it’s so cold. So it’s important for us to know the concrete temperature in the whole bridge and every cast. This has mostly to do with the maximum temperature, but also now in these conditions, we really have to be careful not to have anything freeze until we get the curing.

There are also different aspects, but mostly, that the temperature may not differ too much from the core to the outer edges as the structure can get damaged otherwise. In the current temperatures with the cold, it is a challenge. So we really need to monitor the temperature!

Did you always monitor the concrete temperature in mass concreting?

Asbjørn: It’s always been a requirement that we monitor, but the other systems we used were offline. That means that you go and collect the data and you come back and analyze it.

This also means that in real life, you do this more than one time — maybe once if you’re lucky — and directly get the required result.

Marius: Before Maturix, we used manual data loggers. They were digital, but not wireless. Then, you had to take the sensors, set them up, leave the sensors, cross your fingers, and hope for the best. And then, some days later or some hours later, you have to go back out to the form, check whatever reading there is, collect it, put it into the computer, and see what you actually get.

Asbjørn: So even with the data loggers, it is still very time-consuming to set them up and go get them. Also, you really don’t know what the data looks like until you actually finish the casts and do the analysis. (With Maturix, you get all the graphics and analysis on the screen — live.) And you don’t get any chance of doing something as you progress through the curing process.

That means that you’re not really actively using the data. You’re crossing your fingers and hoping that everything has gone well, and afterwards, you have documentation that it did. It’s a very passive way of working compared to having the data available at all times.

How do you actively use the data?

Asbjørn: So that’s one aspect of it — better active documentation and quality control. Another is, if we forgot something and suddenly there is a change like a temperature drop or some kind of temperature change or another concrete mixture — or if it gets too hot, for instance — or you were expecting to see this curing process start in, say, eight hours, but you didn’t get it until it was 14 hours? Then, we can investigate further why and potentially save time next time by adjusting the mixture or doing some additional work prior to casting.

So, are you using the monitoring data to optimize future casts? Has that influenced internal teamwork?

Asbjørn: Yes. We see that in everyday life, we’re using the data so much more, and discussions around it have been brought up. The temperature data becomes an everyday topic instead of being something that a quality engineer does and documents. And we see that the data has been actively used to improve how we build.

How important is the monitoring data for you, and how do you use it?

Asbjørn: It’s important for us at all levels. For me, as a project manager, it’s important to keep control of all the work going on. We have work in a lot of different sites, and this enables me to keep track of ongoing castings and how they are doing. So basically, we can monitor the situation in real time so that we know what’s going on.

But it’s also important for us in everyday work, where we have control over all the curing processes at a much better level now. And we can much more accurately predict when the concrete is cured and when we can go to the next step.

But it’s also good from a quality aspect. We can use it in meetings and discuss how the castings are going and which areas of concern there might be or how we can adjust for future casts.

Marius: We can check whatever the concrete is doing and share the information with the client. That creates a lot of transparency and trust.

Who has access to the monitoring data?

Asbjørn: Well, we have chosen to share the access to the software with both our clients and third-party members. So everybody has full access to all the data, and the feedback from that is very good! They check the data, and they discuss it with us. We have a very good dialogue with all parties, and we get to share the knowledge of how to improve our quality of work.

It gives a whole new level of trust, showing them that we have nothing to hide. And this is very good to have in a project like this!

So, how easy do you think it would be for someone who has not used Maturix before to get started?

Asbjørn: We’re finding now that it doesn’t take much training at all and that people are really on board. People are really interested and want to use it as much as possible here, and it’s certainly not a system we will go away from.  It has come to stay with us.

Marius: You just take the cable, connect it to the transmitter, start it in the software, and you are ready to go. It’s super easy to get started.

What would you tell someone who is considering Maturix?

Marius: I think it would be better to show them. You get everything that you need, plus a lot more! You get all the data and don’t need to be on-site or do the analysis, so it just is better and quick and easy.

Asbjørn: I’m firmly recommending using the system. It gives you much more insight into what you’re doing. Also, together with your client, it gives you better client relations and a higher quality of work. So in my mind, this is the way forward!

Thank you so much for taking the time to talk with us, and good luck with your work on the E39 project!

Convenient. Cost-Effective. Remote. Concrete monitoring with Maturix. Book a demo today!

The post Interview: Why Maturix® Is Contractor Kruse Smith’s Chosen Concrete Sensor appeared first on Kryton.

Convert Your Concrete Slab from a Maintenance Liability to an Asset

Convert Your Concrete Slab from a Maintenance Liability to an Asset

When you think of concrete, it’s likely not long before you’re thinking about its durability. It’s one of the more well-known advantages of the material. And it’s why many choose to use concrete in construction. After all, no one wants to build with a material that couldn’t withstand the outside elements. So we turn to that concrete durability, relying on it enough to make concrete one of the most consumed materials on the planet, second only to water.

But concrete isn’t invulnerable. Depending on its mix, you could have a maintenance liability on your hands. Luckily, there is a way to avoid that. All it takes is being aware of how you can convert your concrete slab from a maintenance liability to an asset.

An abrasion test has worn a groove in the concrete slab, showing the aggregate underneath the paste.

Keep in Mind That Slabs Can Be Prone to Wear and Tear

The first step in the right direction is to remind yourself that while durable, concrete slabs can still be prone to wear and tear.

It’s why you look for concrete hardening products. They’re meant to add an extra layer of protection to the concrete’s surface, sheltering it from abrasive and erosive forces that might otherwise degrade the concrete.

You can probably think of quite a few culprits responsible for this wear and tear. But as a refresher, let’s look into the specific types of abrasion and erosion you’re likely protecting your concrete from.

Number of Abrasive Forces Can Cause This

As noted in our latest e-book (which you can download and check out for yourself here), there are three specific types of abrasion-only wear:

Sliding abrasion — Also known as two-body abrasion, it’s what happens when a hard object slides across concrete. As it moves, the hard object will begin to gradually bore into the concrete, removing a bit of its surface each time. So if you have skids or some other item with a hard material moving back and forth over your concrete frequently, you’ll start to notice a rut in its surface.

 

Foreign particle abrasion — For any concrete projects that deal with vehicles, you’re sure to come across foreign particle abrasion. That’s because as the vehicles travel over the concrete, hard particles get trapped between the vehicle tires and concrete surface, and that wears down both materials simultaneously.

 

Rolling abrasion — A common sight in industrial spaces, rolling abrasion is what happens when wheels under a heavy load roll over a concrete surface. These wheels might come from carts, forklifts, or other wheeled equipment. But whichever one it is, over time, their movement over the concrete surface wears that surface out and creates noticeable dips in the concrete.

Erosive Forces Can Also Cause Similar Damage

One of the more common types of erosive wear is actually a combination of abrasion and erosion. And it’s often seen in hydraulic projects.

Why?

Well, these projects are typically ones that are surrounded by fast-moving water, such as dams and spillways. So they are more likely to encounter the abrasive effect of debris in the water grinding against their concrete surfaces. This debris might come in the form of silt, sand, gravel, rocks, or even ice. And while it’s roughing up the surface of the concrete, the surrounding water rushing by is gradually causing the concrete to erode.

A pale door shadowed in darkness stands ajar, showing an alarmingly red room past it.

That Can Open the Door to Various Costly Risks

If either abrasion or erosion starts to seriously affect your concrete to the point that you can see the damage, it can create a safety hazard, disrupt operations, and increase maintenance costs.

For Floor Slabs, That Can Involve an Increased Danger of Slipping, Tripping, and Falling

All those dips and ruts in concrete flooring caused by abrasive wear? They can pose a threat to your team’s personal safety.

While for a time, you might be able to work around the uneven flooring, you or someone else on your team is inevitably going to slip, trip, or fall. In fact, it’d be close to a statistical anomaly if you didn’t! Slips, trips, and falls make up a third of lost-workday injuries according to the Centers for Disease Control and Prevention. And as EHS Today notes, the primary cause for more than half of these injuries is due to an issue with a walking surface. So you can imagine the risk you take with keeping that uneven floor!

The cost of not implementing preventative measures for this kind of risk for businesses in the United States of America (USA) alone is about $70 billion a year overall in compensation and medical fees for workers.

For Road Slabs, That Means Traffic Accidents

Similar to how uneven flooring can pose a risk to people walking over it, uneven roads can be a risk to those driving.

Initially, that unevenness might be a slight difference in road surface from all that foreign particle abrasion. But eventually, that slight dip might lead to potholes or a fully uneven road. It also increases tire wear, making the vehicles on the road less efficient and safe to use.

All of which increases the risk for roadway accidents. Potholes on their own cause around $3 billion in vehicular repairs annually in the USA. And in Canada, each year, the cost for drivers as a whole is increasing by that same amount because of increased vehicular repairs and maintenance and general vehicular damage due to poorly maintained roads.

Hazards like potholes pose an even greater risk for those on motorcycles and bikes.

Those on motorcycles, according to the Motorcycle Safety Foundation, may crash when encountering potholes. That can be a significant concern as motorcycle incidents have a 29% higher fatality risk than ones that occur with automobiles and light trucks.

For cyclists, they can end up with permanent nerve damage. But that’s not the worst-case scenario. Much like those on motorcycles, cyclists have a higher fatality rate when it comes to crashing. For instance, since 2007, in Britain, potholes alone have killed at least 22 cyclists and seriously injured another 368.

The Potential Damage Doesn’t Stop There Either

Of course, worker injuries and vehicular damage aren’t the only costs to consider when facing abrasion and erosion damage. You also have productivity, equipment, and structural loss to worry about.

For instance, workers operating forklifts on an uneven surface are likely to drive more slowly to avoid tipping over, reducing worksite productivity. And if they don’t? You’ll likely be paying to repair or replace that forklift and any items it happened to be carrying.

Using fully automated equipment won’t do much to overcome this obstacle on its own either as an uneven surface can prevent it from operating properly.

And what about structures? With enough abrasion and erosion, owners will have to close down for repairs and replace large sections of concrete structures, from floors all the way to hydro dams. All of which is extremely costly to any business and doesn’t endear owners to the concrete they used.

A construction worker is adding Hard-Cem into his concrete mix during batching.

But Your Concrete Slab Doesn’t Have to Be a Maintenance Liability

You just need an effective concrete hardening solution.

Your first thought might be to use conventional surface-applied concrete hardeners like dry shake hardeners or liquid hardeners. However, those come with a number of setbacks.

Dry shake hardeners, for one, come with a complex application process. It’s not a one-and-done deal. Instead, a worksite team has to prepare the worksite first. That means removing excess concrete and preparing the remaining concrete. Then, depending on your chosen hardener’s material, you may have to take an extra step and use a wood bull float and then a machine float. After that, the team can finally move on to actually applying the dry shake hardener, which will cover a couple millimeters of the concrete’s surface.

However, even that part isn’t without complications. Dry shake hardeners can only be applied during a specific time and type of weather. Pick the wrong time and you can end up with delaminated concrete or an inability to even apply the dry shake.

At the same time, this hardener makes use of a toxic material known as silica dust, which means a worksite team needs to meet the proper safety measures to keep workers safe and comply with legal restrictions.

On the other hand, while not as frustrating to apply or as hazardous as dry shake hardeners, liquid hardeners are often misrepresented. They were first sold as dust reducers to help with defective concrete slabs that had a dusty surface. But now, they’re expected to harden concrete, which they do very poorly.

(For more reasons and data on why these aren’t effective solutions and more, take a look at our e-book on the topic!)

So, what can you use instead?

pply Hard-Cem to Increase Your Concrete Slab’s Resistance to Wear and Tear

Unlike any other concrete hardener on the market, Hard-Cem is an integral hardener. That means it applies its hardening properties throughout a concrete mix to form one solid abrasion- and erosion-resistant material. Essentially, it’s an admixture that you add into the concrete mix during batching. At that time, the admixture will permeate the entirety of the mix, giving it a harder concrete paste and reducing fine and coarse aggregate exposure. It does all this to help the concrete effectively resist abrasion and erosion.

Your Concrete Slab Will Gain Many Other Benefits as Well

More specifically, when using Hard-Cem, you’ll double the wear life of your concrete.  Because it does last that long and can resist abrasion and erosion, Hard-Cem-treated concrete comes with fewer maintenance fees. So you won’t need to resurface or replace your concrete as often. And you won’t need to use as much cement. That can increase your savings on carbon emissions by as much as 40%!

In some cases, this has even helped construction teams earn LEED certifications.

All you need to do to get these advantages is to throw the admixture and its dissoluble bag into the concrete mix during batching. There are no extra application steps, toxic silica dust, or inefficiencies to worry about. So you don’t have to spend money or time on hiring extra labor or managing application errors. Hard-Cem does all the heavy lifting, giving your mix the thorough durability it needs as soon as it’s added.

Hard-Cem also offers incredible versatility. It can work for a variety of projects and help harden horizontal, vertical, and inclined concrete. And it is the only hardener capable of being used for air-entrained concrete.

In short, it increases your concrete’s durability, speeds up your construction, reduces application costs, provides universal compatibility for different concrete mixes, and makes it all more sustainable.

A construction worker is guiding concrete mix down into the area it needs to be poured in.

It Just Takes the Right Concrete Mix Ingredients

With Hard-Cem added into your concrete mix, your concrete slabs will be an asset to your project. They’ll need less maintenance over the years, help you reduce your carbon emissions, and most importantly, keep abrasion and erosion at bay to keep your concrete structures standing for as long as possible.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post Convert Your Concrete Slab from a Maintenance Liability to an Asset appeared first on Kryton.

Did you miss our previous article…
https://www.concreteideas.co/?p=1333

Silica Dust: The Dangers and How You Can Mitigate Them

Silica Dust: The Dangers and How You Can Mitigate Them

While it doesn’t look like silica dust is going away anytime soon, you may want to consider using an alternative material for your worksite when possible. After all, regulations in the United States of America (USA) are starting to get tighter. And it’s possible those restrictions will become the norm for other countries too.

In fact, just last year, the USA’s Occupational Safety and Health Administration (OSHA) launched a national emphasis program on the material. It’s an initiative that’s meant to restrict silica dust exposure due to the risk it can pose for workers in a number of industries. As a result, you can now expect more inspections on your management of the material. And if your management doesn’t follow the updated regulations, you could face monetary penalties from $5,000 up to $70,000.

Not long after these restrictions were implemented, the inspector general for the U.S. Department of Labor argued for stricter standards for silica dust management in mines. Those included making use of more frequent silica sampling protocols and issuing citations and fines for excess silica dust exposures.

Similar plans for stricter regulations were approved in 2019 in Australia. The hope was to limit the silica dust exposure that stonemasons in the country experience. While regulations were tightened to a degree, they weren’t tightened as much as planned as there was concern over giving businesses enough time to meet the new compliance requirements.

But why is there such resistance? What makes silica dust so appealing and concerning at the same time? Is there no way around this infamous construction material?

To get a better understanding of the situation, we’ll take a deep dive on the subject. Join us as we delve into why silica dust is popular, what makes it dangerous, and how you can minimize its usage.

An aerial view of a construction worksite shows two yellow cranes among a sea of buildings and materials.

Hard to Avoid, Silica Dust Comes from a Number of Helpful Construction Materials

Whether we like it or not, silica dust comes from a very common mineral. Known just as silica, this mineral is found throughout the earth’s crust. It can come in two different forms: crystalline and noncrystalline silica. That first form is the one we often call silica dust. And it comes in a form of its own known as quartz. It too is also easily found throughout the world as it’s a basic component in sand, gravel, clay, granite, and various rocks.

As you can probably already tell, that means silica dust can be pretty hard to avoid. It’s in a lot of basic construction materials:

ConcreteCementMortarTilesBricksRock- and stone-based asphaltBlasting abrasives

All of which are often the building blocks to a wide variety of construction projects. They help construction workers create buildings, warehouses, and many other structures.

In some cases, silica dust can even be found in products that are meant to help protect structures. That includes surface-applied concrete hardening products like dry shake hardeners.

It’s what makes it so difficult to avoid silica dust. It’s part of our essential building materials, helping to make it possible to construct projects in the first place.

A woman and a man in construction clothes are running upstairs through dust while coughing at a worksite.

But Its Help Can Come at a Serious Cost

So long as people don’t create dust with those materials, they’re fine. The crystalline silica just remains within the material, harmless to people nearby. In return, people can safely reside within durable concrete buildings, stand on nice cool tiles in their bathroom, and so on.

However, that’s not often the case during the construction of those structures.

It May Be Stable When Left Alone, but Once Agitated, It Becomes a Problem

Construction activities of all kinds can often kick up dust. These include, but are not limited to, the following:

ChippingSawingDrillingDemolitionAbrasive blastingTunnelingExcavating

Once those activities do start up and move some dust around, there’s a problem. That’s when it’s possible for crystalline silica to become dangerous and interact in ways it shouldn’t with our health.

That Makes It a Health Risk for Anyone Nearby

Essentially, as soon as silica dust is in the air, there’s a risk for people nearby to inhale it. Why a risk? Well, silica dust is a known carcinogen, meaning it can cause cancer in people. More specifically, silica dust is known to spur on the development of lung cancer. And that isn’t the only disease it can lead to. It can also cause people to develop kidney disease and chronic obstructive pulmonary disease.

After inhaling silica dust, people may even develop silicosis, which is particularly dangerous as there is no test for it. You can’t even easily define the signs of silicosis. Its symptoms match many other diseases after all. And you can’t recover from it either.

However, silicosis only tends to occur after you’ve been exposed to silica dust for 10–20 years. That may seem like a more manageable risk level to you. But keep in mind that if your exposure is intense enough, you could develop silicosis after 5–10 years or even after just a few months of exposure. And that’s only for this one particular disease!

In fact, it doesn’t take much silica dust at all to be a threat, whether you’re exposed to it over the years or within a day. That’s why OSHA limits a person’s permissible exposure level to silica dust to 50 μg/m3 over an eight-hour day.

A dust suppression truck is traveling through a road surrounded by green trees while spraying water to suppress dust.

Many Try to Mitigate the Damage of Silica Dust

Despite its risk, silica dust is still necessary for certain areas in construction. That’s why construction sectors and work safety organizations around the world take silica dust safety seriously. As a result, they typically apply the following safety measures and more to manage the application of the material in a responsible way that’s designed to keep construction workers and the overall worksite as safe as possible.

Part of That Includes the Use of Engineering Controls

These measures are designed to eliminate hazards like silica dust before workers come into contact with them. It’s what makes them more favorable than other measures like administrative controls and personal protective equipment (PPE). However, that’s also what can make them a bit more costly at the start. In the end, though, these controls are always good to have in the long run. While initially costly, over time, they’ll reduce operating costs for construction teams and keep them safe and healthy at the same time.

So, how does this work for silica dust?

There are a number of engineering controls that can be used against silica dust. These include the following:

Dust suppression — To prevent as much dust as possible from stirring at all, workers might choose to use water sprays. These might be sprays that can be attached to a tool like a pneumatic, hydraulic, or gas-powered saw. Or they might be sprays that form a curtain of water to protect a specific area from airborne dust particles. In either case, the idea behind it is that once dust particles come into contact with water droplets, they become heavier and are less likely to float in the air and pose a threat to workers.

Ventilation — When workers are agitating silica dust, they can use local exhaust ventilation to suck the dust away before it reaches their breathing area. For instance, if they are using hand-held cut-off saws to cut concrete, they can connect an exhaust hood (also known as a shroud) to the tool first. The hood is connected to an industrial vacuum cleaner with a flexible hose, which allows it to produce enough suction to capture the silica dust.

Industrial vacuum cleaning — Much like with portable ventilation, workers can suck dust away from areas through high-efficiency particulate air (HEPA) filtering vacuums. There are a variety of HEPA vacuums to choose from, including stationary, intermittent-filtering, and continuous-filtering models. So the efficiency of dust suppression with this method will depend. Though, workers should use one that has oversized filters. That allows the vacuum’s filtration system to collect a lot of dust and debris for a longer period than a vacuum with smaller filters.

dministrative Controls Also Come into Play

While not as favorable compared to engineering controls, administrative controls can be combined with them for extra protection. Under these particular controls, a construction team will determine the right work procedures that allow workers to do their job well and safely.

According to the Canadian Centre for Occupational Health and Safety, that can include implementing the following practices:

Worksite education — Without proper knowledge of silica dust, workers could have an increased risk to getting hurt while working near the material. To prevent that, it’s important all workers know what silica dust is, why it’s a threat, and how they can reduce that threat to a manageable level.

An exposure control plan — On top of worksite education, a construction team should have an exposure control plan. That ensures they will have a handy reference at their disposal that outlines the proper directions and expectations for preventing silica dust exposure.

Proper washing facilities on-site — To keep silica dust from spreading too far from the worksite, workers need to make sure they aren’t heading home in a cloud of the material. That might sound a little tricky, but all this requires is proper washing facilities at the worksite. These should provide clean water, soap, and individual towels. That way, each worker has the opportunity to effectively remove any dust around them.

nd for Extra Good Measure, Workers Have PPE

Similar to administrative controls, PPE is more effective when combined with engineering and administrative controls.

But this all depends on the equipment used! Some may find it easier to whip out a disposable dust mask and wear it. As the National Precast Concrete Association notes, it’s likely to be less hot to wear and easier to talk through than respirators approved by official safety authorities like the National Institute for Occupational Safety and Health (NIOSH). And with the word dust in that name, it sounds like it might protect workers from silica dust, right?

Well, unfortunately, that’s just not the case. Disposable dust masks are not NIOSH-approved. And they aren’t meant to really protect people from toxic substances. They’re actually better used as a way to stay comfortable while mowing grass or sweeping or dusting an area.

That’s why you want to go with an officially recognized and approved respirator. It’s designed to protect the wearer from all sorts of airborne contaminants, such as hazardous dusts, fumes, vapors, and gases.

On top of that, workers should also wear overalls and gloves to protect the rest of their body from coming into contact with silica dust. It also makes it easier for them to leave the dust at the worksite as they can simply strip off that uniform, leave it for cleaning on-site, and go home in their non-dusty attire.

A construction worker is surrounded by Hard-Cem bags and is holding one while preparing to add it to the concrete mix during batching.

But There Are Also Substitutes for Silica Dust to Minimize or Eliminate Its Use

You don’t always need to deal with silica dust or with as much of it as you might think. In fact, there are some great silica dust-free alternatives that you can use to keep your worksite just that much safer.

For a Silica Dust-Free, Non-Toxic Concrete Hardener, Look to Hard-Cem

It may be more conventional to harden your concrete with products like dry shake hardeners. But those often come with silica dust.

Luckily, you can eliminate this concern entirely when you use Hard-Cem. It’s free of silica dust. And as the only integral hardening admixture on the market, Hard-Cem has the unique ability to enter a concrete mix directly. Because of that, you don’t need to hire extra labor to apply it or have to worry about it not covering your concrete completely. You just add its dissoluble bag into the concrete mix during batching and let it permeate throughout the concrete. That gives the concrete full-depth hardening and increases its resistance to abrasion and erosion.

In return, you get concrete with double the usual wear life and a much more durable surface. That allows you to minimize the number of repairs or replacements you otherwise might need, which also reduces how much carbon your project emits.

There Are Also Many Other Substitutes for Different Applications

Of course, silica dust doesn’t just help with concrete hardening at times. It also helps with many other construction activities. So what can you substitute silica dust with for those?

While that may not be possible for every activity, you can substitute silica dust in the following activities:

Abrasive blasting — OSHA lists a number of silica dust substitutes for abrasive blasting materials. These include aluminum oxide, baking soda, coal slag, copper slag, and corn cob granules.

 

Precision grinding — The Workers Health & Safety Centre in Ontario, Canada, notes that grinding (also known as abrasive cutting) in construction can be done without silica dust. Instead of using sandstone grinding wheels, workers can use aluminum oxide wheels.

Two construction workers are working on top of a partially constructed concrete structure.

Silica Dust Doesn’t Have to Be a Problem at Your Worksite

It may feel like it’s everywhere (and in some cases, it certainly can be!). But you don’t have to put up with silica dust all the time. There are ways to not only mitigate its potential for damage but to also remove it entirely. Whether you choose to harden your concrete through Hard-Cem or use other alternatives, you can minimize the silica dust at your worksite, keeping workers safer and your worksite just as, if not more, productive.

Click here to find out why the industry is moving away from surface-applied concrete hardeners.

The post Silica Dust: The Dangers and How You Can Mitigate Them appeared first on Kryton.

How Combining Concrete Admixtures Simplified Aquatera’s Expansion

How Combining Concrete Admixtures Simplified Aquatera’s Expansion

Ever thought about what it takes to keep the water you drink and the water you see outdoors clean? It’s not often considered! But there are companies who work tirelessly to make it all happen. Aquatera is one such company. Since 2003, they’ve acted as the owner and operator of water and wastewater treatment and transmissions systems for the City of Grande Prairie in Alberta, Canada.

Under their direction, Grande Prairie’s citizens have been able to enjoy safe, clean drinking water and ensure that their wastewater returns fully sanitized back to the Wapiti River. It’s a direction that worked for a decade.

However, by 2013, Grande Prairie’s population had grown by more than 18,000 people. While that was great for the area’s economy, it left Aquatera’s plant running at full capacity. If the population grew any further, the plant would not be able to accommodate the increase in demand.

Determined to leave no person without their essential service, Aquatera chose to expand their plant.

Water can be seen being treated in Aquatera's wastewater treatment plant.

quatera’s Expansion Would Involve Multiple Additions to Their Plant

It would also cost a pretty penny! For over $58 million, Aquatera would be able to fully upgrade the plant to include the following:

Two new biological nutrient removal reactors (BNRs)Two new circular secondary clarifier filtersA new centrifuge building

While this upgrade would be expensive, the end result would be priceless. These additions would give Aquatera’s plant two major benefits that would keep it running throughout Grande Prairie’s ongoing growth spurt.

They Would Help the Company Meet Current and Future Regulations

As a company that handles the water and wastewater treatment for a whole city, Aquatera is beholden to a number of rules and best practices. These come in the form of provincial and federal regulations and guidelines. And they also include individual municipal utility bylaws from four shareholders.

Of course, it also means that Aquatera needs to periodically update their system to meet the latest standards. Taking that into account, Aquatera knew they’d need their upgrade to address this. That’s why they chose to add two more BNRs to their plant. Both would allow them to satisfy the needs of Grande Prairie and meet current and future regulations surrounding those needs.

nd They Would Also Increase the Company’s Overall Efficiency

More importantly, all of the additions to Aquatera’s plant would give it the ability to work more efficiently. For instance, the plant would be able to treat 12,000,000 more liters of wastewater a day than it would have before. To put that into perspective, the plant’s original capacity limited the plant to treating 22,000,000 L of wastewater a day. But with the upgrades, the plant would be able to treat up to 34,000,000 L daily.

On top of that, the upgrades would also increase the plant’s sustainability. They would give the plant a longer life span while reducing how much power it consumes and how many greenhouse gases it emits.

Combining this new capacity increase and sustainability enhancement meant that the plant would be able to work in a more eco-friendly manner while having the capacity to serve a growing population.

A civil engineer is holding up blueprints while in snowy weather, determining how they'd want to use their concrete admixtures.

But These Upgrades Came with a Couple of Challenges

While Aquatera was eager to start upgrading, they had to make sure their construction team would be able to complete the project on time while working in Alberta’s harsh wintery conditions.

With that in mind, it was clear to them that working with concrete in such a climate meant they’d need a time-effective solution that could give them both permanently waterproof and highly durable concrete. And this solution would need to be able to handle significantly cold temperatures over the winter season. In short, it would have to be an innovative solution.

They Couldn’t Go with a Conventional Surface-Applied Solution

Traditional solutions like surface-applied concrete waterproofing and hardening products are costly and time-consuming. After all, crews need to be scheduled to handle the application. And that can involve the need to spend more to hire extra workers and expensive equipment. Even if all those costs could be managed, it still means waiting for the workers to finish their manual application.

At the same time, that process adds the risk of application errors. No matter how well trained a manual applicator is, they’re only human. So there’s always a chance that the application will not uniformly cover the concrete. And that could leave weak spots in the finished concrete structure.

If Aquatera wanted their concrete waterproofing and durability solution to be both timely and cost-effective, they would need to look elsewhere.

They’d Also Need to Be Careful of the Weather

No matter what they chose as their solution, the construction team would still have to make sure that it could handle the wintery weather. With surface-applied solutions, that could prove to be difficult. It would double the amount of heating they’d have to worry about after all. Both the solutions themselves and the surrounding ground would need to remain unfrozen. Otherwise, the cold weather would interfere with the process, making the concrete set more slowly. That in turn would make the surface application take even more time. There would even be the possibility of the concrete slab crusting, where only its top part sets.

So, if Aquatera’s upgrade was ever going to happen, the company’s construction team would need a non-surface-applied solution that could handle the cold weather just fine.

Kryton's KIM and Hard-Cem admixtures ready to optimize building space.

To Manage These Obstacles, Aquatera Chose Smart Concrete Solutions

The main challenge for Aquatera was eliminating the difficulties that come with surface-applied products. Luckily, they soon came across Kryton’s Edmonton distributor, Cascade Aqua-Tech Ltd. From there, they were able to secure their very own supply of our integral concrete waterproofing admixture, Krystol Internal Membrane
™
(KIM), and our integral concrete hardening admixture, Hard-Cem

Using the Concrete Admixtures KIM and Hard-Cem, They Were Able to Ease Their Construction Timeline

Because both KIM and Hard-Cem are integral admixtures, they can be added directly into a concrete mix. That eliminates the need to hire extra labor to apply waterproofing and hardening solutions. There’s also little concern for application errors. Instead, each admixture will permeate throughout the concrete, giving it an even, thorough dose of waterproofing and hardening.

The construction team benefited from this approach, adding the products to the concrete mix to meet the specific needs of the wastewater treatment plan.

For KIM, they started by adding it separately to the following:

Some slabs and retaining walls for the gallery and tunnel raftExposed structural concrete that was covering the first two structuresA raft slab and some compartment walls for the BNRs and circular secondary clarifier filters

That allowed KIM to protect each area from potential chemical attacks as the Krystol technology within the admixture could form interlocking crystals that block out water and waterborne particles and fill up any spaces that either might pass through.

For Hard-Cem, they added it separately to the centrifuge building’s slab-on-grade. That would double the building’s resistance to abrasive and erosive wear so that it could withstand the exposure to chlorides and severe amounts of sulfate from the wastewater treatment process.

And for extra protection for the plant’s steel deck, the construction team added both KIM and Hard-Cem to the concrete mix, giving the deck’s surrounding concrete protection against moisture ingress, chemical attack, and abrasive and erosive wear.

Even When Weather Conditions Worsened, Their Construction Still Went By Relatively Smoothly

Because of how easy it was to apply these concrete admixtures, the construction team was able to diligently and effectively continue their work throughout two snowy winters — even when one winter came with a snowfall that was over 10 ft!

Such weather would have made it harder to work with surface-applied concrete waterproofing and hardening solutions as the solutions themselves would have needed protection from the cold.

But with the instant application of concrete admixtures KIM and Hard-Cem, where they can be directly added to the concrete mix during batching, it made it easy for the construction team to both waterproof and harden their concrete. There was no concern over protecting the admixtures after all. The admixtures would simply go into the mix and provide their benefits while the team could carry on with heating the ground and properly placing and curing their concrete.

Aquatera's worksite rests in the background of the shot, showing a more complete project.

Overall, KIM and Hard-Cem Transformed Aquatera’s Expansion into a Success 

In the end, thanks to the concrete admixtures, KIM and Hard-Cem, Aquatera’s construction team was able to upgrade the wastewater treatment plant within their timeline. It was a successful bit of construction that was only further proven to be so when the upgrades passed every hydrostatic test the team put them through.

Both KIM and Hard-Cem have gone on to contribute to many other success stories like this one. If you want to see more of their work, take a look at our library of case studies.

Download our e-book today to find out why the industry is moving away from surface-applied concrete hardeners.

The post How Combining Concrete Admixtures Simplified Aquatera’s Expansion appeared first on Kryton.

Concrete Monitoring with Maturix®: Frequently Asked Questions

This past year, contractors and precast companies throughout North America got a chance to increase their productivity when it came to concrete monitoring. With the 2020 North American launch of Maturix Smart Concrete Sensors, they could now monitor concrete with fully wireless sensors that can be accessed remotely. All of which made monitoring concrete quicker and much more cost-effective.

The sensors caught a lot of industry interest because of this. Of course, that interest didn’t just come from the North American launch. The sensors were initially launched in Denmark and generated a lot of interest before coming to this continent. Since then, 555 Maturix suitcases have been distributed. With their help, builders were able to create 4,248 precast reports and 6,443 in-situ reports. That went on to improve 861 projects in just one year. (To see just how successful these projects have been, take a look at this interview with one of our clients.)

We’re excited to bring MaturixSensors to the North American market and have been fielding a lot of calls from clients interested in the technology. If you happen to be interested yourself and want to know more, we have created an easy-to-read online guide here for you on the most frequently asked questions about Maturix.

First Off, What Is Maturix?

We’ve shared that Maturix is a type of sensor that wirelessly monitors concrete as it develops. But there’s much more to it than that!

To start, the setup is simple. All the Maturix Sensor needs is a connection with a type K thermocouple wire, which is attached to the rebar within concrete. Once connected, the sensor will immediately start monitoring the concrete’s developing temperature and strength. The data it gains from this monitoring is then transferred wirelessly to a cloud-based platform. That platform will go on to send the data to any connected device a user chooses.

In short, Maturix makes fully remote monitoring possible and offers users a way to determine what exact temperature and strength their concrete has at any time. So contractors don’t have to send someone out to physically retrieve the data. And precast companies can remove the guesswork involved in determining when they should remove formwork. That allows them to save time, cut costs, reduce risks, maintain quality control, improve workflow, and more.

How Does It Work?

So, now, we know what it is and what it does.

But how exactly does Maturix work? How is it able to provide such accurate measurements on concrete temperature and strength?

Well, once it’s plugged into a thermocouple wire that’s embedded into a concrete slab, the Maturix Sensor is able to take the actual core temperature of that slab. Then, it can use that information to calculate the compressive strength of the concrete. To do that, it uses a calibrated maturity curve that’s based on ASTM C1074 — Standard Practice for Estimating Concrete Strength by the Maturity Method.

Many in the industry view this method to be one of the more highly accurate and reliable ones out there as the sensor’s thermocouple wire is embedded into the concrete. That gives the sensor a look at the concrete’s actual conditions. In return, construction workers can get a true reading on the status of their concrete on-site. So they can make better building decisions to reduce project risks.

What Makes It Different from Other Concrete Monitoring Devices Out There?

There are a number of differences that set Maturix apart from other sensors. But the most evident is its reusability. Unlike with most other wireless sensors, you can take the Maturix Sensors you used in a previous project and continue using them in future projects. Even if your future project needs to be done in multiple phases, you can still reuse your sensors after each phase, making Maturix highly efficient.

That’s mainly thanks to how these sensors are designed. The sensors themselves remain outside of the concrete in tough, durable cases. That way, they can stay safe while monitoring concrete at the worksite. At the same time, they’re still able to accurately monitor because they’re connected to thermocouple wires that are embedded in the concrete.

Because of that, the type K thermocouple wires themselves become unusable after one project. However, they are pretty easy to find around the world and can be bought for a reasonable price.

In short, you get to save a lot of money on buying sensors for each project while spending just a little bit to replace their thermocouple wires.

If you were to use other sensors, however, you’d likely have to worry about buying a whole new set of them for each project. There are also other disadvantages to consider too. For instance, sensors that use Bluetooth technology often expire after a single use. They also cannot transmit data from too far a distance, meaning users will still need to go to the worksite to access the data.

Temperature data loggers are not much better. They can be reusable. But their data needs to be manually collected and then manually exported and analyzed. There’s no system to do all that work for you. So it falls on your team to spend more time on that.

What about Data Collection? How Does That Work Differently?

When you use Maturix, you’ll find that once activated, it will transmit concrete monitoring data every 10 minutes. During this process, the data will go from the sensor to a cloud-based platform.

How Can I Access the Data through the Maturix Software?

Once your data is stored in the cloud-based platform, you can access it at any time through a browser on any connected device. You can go with any browser, but we recommend using Google Chrome or Mozilla Firefox.

After your user account is set up then, you’ll be able to easily log in to the platform through your preferred browser and access your data. Once there, you’ll be all set to view all the concrete monitoring data you like!

Is There a Limit to the Number of Users Who Can Do the Same?

Not at all! You can invite as many users as you’d like to join your concrete monitoring. That way, you and your team can all see how your concrete develops as it happens in real time.

Is There a Way to Alert Myself and Others to Key Concrete Monitoring Moments?

Yes! Maturix offers an alert system so that the right people are alerted to critical monitoring activities at all times. That ensures everyone gets the right data at the right time, expediting approvals in the process. It also allows you and your team to better prepare for any sudden changes to your concrete’s condition.

Some of the critical activities you can notify yourself and others about include the following:

Concrete temperature going above or below a certain valueTemperature difference, concrete strength, or concrete maturity going above a certain valueA Maturix Sensor not receiving data or being disconnected after a certain time

There’s no limit to how many of these notifications you can create either. So you can add as many or as few as you need to best serve your project.

Is All This Under Warranty?

Yes, these sensors are warrantied for life! All you need to do is maintain your monitoring service subscription, and we’ll continue to provide the best service possible for them.

What If I Have More Questions about Maturix?

This article should give you all the basic information you need to know in order to work with Maturix. But if you still have questions, don’t worry! There are plenty of resources at your disposal. For instance, we have a section on our website that deals with these and other frequently asked questions. You can also contact a representative of ours for a more hands-on approach to learning how to use Maturix.

In short, with Maturix, you not only get the benefits of concrete monitoring data wherever you are, you also get extensive technical support from Kryton.

 

The post Concrete Monitoring with Maturix®: Frequently Asked Questions appeared first on Kryton.

Did you miss our previous article…
https://www.concreteideas.co/?p=1316

Doing Business Virtually: It’s Time to Up Your Game

Doing Business Virtually: It’s Time to Up Your Game

It’s the beginning of a new year full of possibilities for business leaders. We still face many of the same challenges as last year, but with the rollout of vaccines worldwide, we should start to experience more stability in the market.

However, there’s still a ways to go, so how do we continue to adapt and maximize the opportunities in the year ahead?

We heard a lot about how to pivot our business in 2020. Now, we need to consider what that means to us in 2021. To do that, we should look at what’s affected everyone the most and how we can use it to up our game.

A hand is holding a black tablet that shows results from Maturix Sensors monitoring concrete.

Consider the Rising Adoption of Business Technology

Recent reports have shown that the adoption of technology has increased significantly over previous years, with the use of video conferencing technology on its own rising by 35%.

It was no different for us here at Kryton as virtual meetings became a mainstay for our communication. Despite this change in workflow, our team did a great job in responding to our immediate need to conduct business virtually. We held meetings on Zoom, participated in virtual trade shows, hosted online webinars, and increased our presence on the web through social media posts and digital marketing.

While we personally have managed to step up our game in the digital landscape, I know we have only tapped into a small percentage of what’s available to us in virtual communications. And it’s not about adding more systems to the mix. It’s about fully utilizing the systems we now have in place, ensuring our skills keep up with the technology we have.

Every business leader should consider this because according to the World Economic Forum, the gap between technology and skills is getting so broad that we are in a global crisis. Part of it stems from a common conundrum in business where professionals invest in new systems but struggle with adoption.

If you look at this in the context of my favorite sport, golf, it’s like buying a set of clubs and then hitting the links with no training. You’ll manage to get some decent shots once in a while, but your score will be mediocre at best. To take your game to the next level, you need training and practice.

Several people can be seen on a laptop screen, participating in an online meeting, while a green mug of coffee sits to the left of the laptop.

That May Mean Working with Video Conferencing Technology More Often

With the global workforce moving to a work-from-home model and more meetings being held online, remote tools, like video conferencing, have become an essential component of the modern business world. That hasn’t always been easy for most of us, I imagine. But through trial and error, our team at Kryton has learned some of the best practices that all of us can apply when using video conferencing technology.

To Start, You’ll Want to Mitigate Potential Technical Difficulties

You don’t want to have to delay a meeting with an important client just because your video conferencing system isn’t working properly. Solving technical difficulties can take up valuable time, so it’s best if you make sure the technology can run smoothly before you head to the meeting. That includes checking your Internet connection, software, camera, microphone, and other technical devices for any issues. You’ll also want to log in early, if possible, so you have the time to troubleshoot. It’s especially critical to do that if you’re the host as that ensures your meeting will start on time.

Stay on Mute When You’re Not Talking

Most microphones can pick up minor background noises like typing and coughing. These sounds can easily distract other video conferencing participants and potentially even cause annoyance. So make sure you mute yourself when you’re not taking part in the conversation.

nd Ensure You Treat These Meetings as If You Were There in Person

While it’s easy to get distracted with checking your inbox and browsing online during a video conference, you probably shouldn’t. Treat it as though you are attending a meeting in person. Also, look into the camera instead of the computer monitor when you speak so you appear to be looking directly at the person.

There are many more tips to consider for video conferencing, but the key takeaway is to treat it like it’s a meeting in person. For instance, being on time, dressing properly, and paying attention are all expected for in-person meetings, and it’s no different for remote ones. A good rule of thumb is to ask yourself if you would do the same thing if you were in a physical meeting.

Positive statistics are shown on the screen of a laptop that is sitting on a shiny desk in an office.

Don’t Let Technical Difficulties Hold You Back

It’s typical for users to only learn as much as it takes to achieve the meeting, but not go on to become proficient with the tool. This can be a big mistake and missed opportunity. I’m encouraging my team to go pro and master the skills needed to fully benefit from these communication tools. And I encourage all business leaders to do the same. Don’t let your technology hold you back or limit you in any way. As a business owner, consider the time and training needed for your employees to learn new systems. Training sessions, peer groups, manuals, and briefing documents can all support the adoption of new technology. As a user, commit to taking the time to practice and learn. This will benefit you now and in the long run as virtual communication becomes a permanent part of the business landscape.

The post Doing Business Virtually: It’s Time to Up Your Game appeared first on Kryton.

Did you miss our previous article…
https://www.concreteideas.co/?p=1311